19.01.2015 Views

EGAS41 - Swansea University

EGAS41 - Swansea University

EGAS41 - Swansea University

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

41 st EGAS CP 24 Gdańsk 2009<br />

Interference spectra involving doubly excited states<br />

[1s2p]( 3 P)3p 2 (J=1) in 1s photoionization of Ne<br />

J.J. Wan 1 , C.Z. Dong 1,2,∗<br />

1 College of Physics and Electronic Engineering, Northwest Normal <strong>University</strong>, Lanzhou<br />

730070, Gansu, China<br />

2 Joint Laboratory of Atomic and Molecular Physics, NWNU & IMP CAS, Lanzhou 730070,<br />

Gansu, China<br />

∗ Corresponding author: dongcz@nwnu.edu.cn<br />

Combining the multiconfiguration Dirac-Fock (MCDF) method and the Fano technique<br />

[1], the interference effects between photoionization and photoexcitation autoionization<br />

involving doubly excited [1s2p]( 3 P)3p 2 (J=1) states of neon have been studied theoretically.<br />

The resonant excitation energies from the ground state 1s 2 2s 2 2p 6 1 S 0 to the doubly<br />

excited states [1s2p]( 3 P)3p 2 (J=1) and the relevant bound/continuum-bound transition<br />

matrix elements have been calculated by using RATIP package [2-4] and RERR06 code<br />

[5-6] and then the Fano parameters q and ρ 2 can be obtained. In Fig. 1, the fine structure<br />

of the calculated interference spectra is compared with the available experiment [7],<br />

and the dominant contribution to the strength and profile resulting from some individual<br />

resonances are shown.<br />

Relative strength<br />

Photoabsorption cross section (10 -19 cm 2 )<br />

1.0<br />

0.9<br />

0.8<br />

2.14<br />

2.12<br />

2.10<br />

2.08<br />

2.06<br />

3.5<br />

3.0<br />

2.5<br />

2.0<br />

3.5<br />

3.0<br />

2.5<br />

2.0<br />

15<br />

10<br />

15 05<br />

10<br />

30 05<br />

10<br />

20<br />

6<br />

2.75 0<br />

2.50<br />

7<br />

2.25<br />

2.00<br />

2.13<br />

2.12<br />

8<br />

2.11<br />

2.10<br />

2.15<br />

2.14<br />

9<br />

2.13<br />

2.12<br />

2.11<br />

897 898 899 900 901 902 903 904 905<br />

Photon energy (eV)<br />

Figure 1: Comparison between the experimental spectra [7] and the calculated individual interference<br />

profile in Babushkin gauge. The theoretical energies are shifted by +2 eV for comparison.<br />

EXP<br />

1<br />

2<br />

3<br />

4<br />

5<br />

References<br />

[1] U. Fano, Phys. Rev. 124, 1866 (1961)<br />

[2] S. Fritzsche, et al., Comput. Phys. Commun. 124, 340 (2000)<br />

[3] S. Fritzsche, et al., Nucl. Instr. Meth. Phys. Res. B 205, 93 (2003)<br />

[4] S. Fritzsche, J. Electron Spectrosc. Relat. Phenom. 114-116, 1155 (2001)<br />

[5] J.J. Wan, et al., J. Phys.: Conf. Ser. 58, 367 (2007)<br />

[6] C.C. Sang, et al., Acta Phys. Sin. 57, 2152 (2008) (in Chinese)<br />

[7] M. Oura, et al., Phys. Rev. A 70, 022710 (2004)<br />

84

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!