20.01.2015 Views

The ecology of eelgrass meadows in the Pacific Northwest: A ...

The ecology of eelgrass meadows in the Pacific Northwest: A ...

The ecology of eelgrass meadows in the Pacific Northwest: A ...

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

hydrocarbons and o<strong>the</strong>r herbicides, <strong>in</strong>to<br />

our shallow coastal zone. Additions <strong>of</strong><br />

toxic materials are known to affect animal<br />

communities (Thayer et al. 1975a), but<br />

little has been done to document <strong>the</strong>ir<br />

direct effect on <strong>eelgrass</strong>. More research<br />

is needed, only on <strong>the</strong> bioaccwnulation<br />

<strong>of</strong> metals and toxic chemicals by <strong>the</strong><br />

plants but also <strong>the</strong>ir accumulation and<br />

possible transfer thruugh <strong>the</strong> graz<strong>in</strong>g and<br />

detritus food cha<strong>in</strong>s and nutrient cycles.<br />

In an attempt to decimate <strong>eelgrass</strong> <strong>in</strong> Nova<br />

Scotia to enhance oyster growth, Thomas<br />

(1968) found that <strong>the</strong> herbicide,<br />

butoxyethanol ester <strong>of</strong> 2, 4-Dl was most<br />

effective <strong>in</strong> kill<strong>in</strong>g <strong>the</strong> plants. This was<br />

applied to <strong>the</strong> plants <strong>in</strong> <strong>the</strong> field.<br />

Correll and Wu (1982) found that <strong>the</strong><br />

herbicide atraz<strong>in</strong>e, commonly used <strong>in</strong> corn<br />

production, stimulated photosyn<strong>the</strong>sis at<br />

75 ug/liter <strong>in</strong> <strong>eelgrass</strong>, but <strong>in</strong>hibited it<br />

at 650 ug/liter. This herbicide was<br />

tested follow<strong>in</strong>g a gradual decl<strong>in</strong>e <strong>in</strong><br />

populations <strong>of</strong> many species <strong>of</strong> submerged<br />

vascular plants <strong>in</strong> <strong>the</strong> upper and<br />

midreaches <strong>of</strong> Chesapeake Bay. <strong>The</strong>y noted<br />

that <strong>the</strong> temporal and spatial use pattern<br />

<strong>of</strong> atraz<strong>in</strong>e arourul <strong>the</strong> bay correlated well<br />

with <strong>the</strong> observed decl<strong>in</strong>e <strong>in</strong> <strong>the</strong> estuar<strong>in</strong>e<br />

plant populations. It is clear that<br />

herbicides can be extreme1 y damag<strong>in</strong>g.<br />

Run<strong>of</strong>f fro<strong>in</strong> waterways that dra<strong>in</strong><br />

agricultural areas can severely damage<br />

<strong>eelgrass</strong> systems by sdirnent transport and<br />

by herbicide contents. <strong>The</strong>se waters<br />

should be monitored for <strong>the</strong>se chemicals.<br />

6.4 RQAT USE<br />

Impacts to <strong>eelgrass</strong> <strong>meadows</strong> <strong>in</strong> <strong>the</strong> <strong>Pacific</strong><br />

<strong>Northwest</strong> do not normally result from<br />

physical disturbance <strong>in</strong>volv<strong>in</strong>g cuts made<br />

by boat propellors. In south Florida,<br />

Zieman (1982) stated that <strong>the</strong>se cuts are<br />

<strong>the</strong> most common form <strong>of</strong> disturbance to<br />

seagrass beds.<br />

<strong>The</strong> numbers <strong>of</strong> black brant are decl<strong>in</strong><strong>in</strong>g<br />

<strong>in</strong> <strong>the</strong> <strong>Pacific</strong> <strong>Northwest</strong>, ow<strong>in</strong>g to an<br />

<strong>in</strong>crease <strong>in</strong> human use and development <strong>of</strong><br />

<strong>the</strong> coastal area (Reiger 1982). Between<br />

<strong>the</strong> 1940's and 1981 brant stopp<strong>in</strong>g <strong>in</strong><br />

Wash<strong>in</strong>gton decl<strong>in</strong>ed by 74%; <strong>in</strong> Oregon, by<br />

90%; and <strong>in</strong> California, numbers decl<strong>in</strong>ed<br />

by almost 99%. Reiyer attributed this to<br />

<strong>the</strong> dra<strong>in</strong><strong>in</strong>g <strong>of</strong> coastal marshes, <strong>the</strong><br />

conversion <strong>of</strong> bays to mar<strong>in</strong>as, and <strong>the</strong><br />

impact <strong>of</strong> an <strong>in</strong>creas<strong>in</strong>g number <strong>of</strong> weekend<br />

bters, who have driven w<strong>in</strong>ter<strong>in</strong>g brant<br />

to Mexico where populations have grown<br />

from 80,000 <strong>in</strong> <strong>the</strong> early 1950's to as many<br />

as 130,000 tcday.<br />

Even if <strong>the</strong>se numbers are only<br />

approximately correct or merely <strong>in</strong>dicate<br />

trends, an aggressive program is needed to<br />

create protected zones around <strong>the</strong> large<br />

<strong>eelgrass</strong> beds which harbor <strong>the</strong> brant.<br />

6.5 TEMPERATWE AND SALINITY<br />

Temperature is probably <strong>the</strong> most critical<br />

<strong>of</strong> <strong>the</strong> suite <strong>of</strong> environmental factors<br />

that affect mar<strong>in</strong>e life. ~t is a<br />

controll<strong>in</strong>g factor. In <strong>the</strong> case <strong>of</strong><br />

seagrasses, it affects growth,<br />

development, and phenol- ical cycles.<br />

McMillan (1978) and Phillips et al.<br />

(1983a) regorted that <strong>eelgrass</strong> populations<br />

have upper and lower <strong>the</strong>rmal tolerance<br />

levels and that temperature regimes at<br />

local sites along broad latitud<strong>in</strong>al<br />

gradients on both coastl<strong>in</strong>es <strong>of</strong> North<br />

America control <strong>the</strong> occurrence and tim<strong>in</strong>g<br />

<strong>of</strong> flower and seed production.<br />

McMillan (1978) subjected three different<br />

<strong>eelgrass</strong> populations from Puget Sound,<br />

each with different leaf widths, to three<br />

different temperature treatments. After 4<br />

mo, each population ma<strong>in</strong>ta<strong>in</strong>ed its<br />

orig<strong>in</strong>al leaf width, <strong>in</strong>dicat<strong>in</strong>g that local<br />

populations ma<strong>in</strong>ta<strong>in</strong>ed dist<strong>in</strong>ct genetic<br />

l i m i t s <strong>of</strong> ecoplasticity to <strong>the</strong>ir<br />

environments, <strong>The</strong>se tolerance levels vary<br />

with <strong>the</strong> local area. Biebl and McRoy<br />

(1971) not only found a difference <strong>in</strong> <strong>the</strong><br />

<strong>the</strong>rmal tolerances <strong>of</strong> <strong>in</strong>tertidal pool and<br />

subtidal <strong>eelgrass</strong> <strong>in</strong> I zembek Lagoon,<br />

Alaska, but also found that both forms<br />

could withstand a range <strong>of</strong> water<br />

temperatures from -6O C to 27O C, while<br />

plants from Puget Sound and California<br />

were killed at -6O C. McMillan and<br />

Phillips (1979) found that <strong>eelgrass</strong> <strong>in</strong><br />

Alaska had more heat resistance than<br />

plants from Puget Sound or California,<br />

ow<strong>in</strong>g to <strong>the</strong> selective <strong>in</strong>fluence <strong>of</strong> a<br />

greater environmental variability <strong>in</strong><br />

Alaska.<br />

In <strong>the</strong> Ber<strong>in</strong>g Sea and along <strong>the</strong> Atlantic<br />

coast <strong>of</strong> North m-erica, <strong>the</strong>re is a fairly

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!