27.01.2015 Views

Chapter 10 - NCPN

Chapter 10 - NCPN

Chapter 10 - NCPN

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Practice and Problem Solving<br />

Use a double-angle or half-angle identity to find the exact value<br />

of each expression.<br />

5. cos 120° − 1 2<br />

6. sin 90° 1<br />

7. cos 90° 0 8. sin 240° − 3<br />

2<br />

9. tan 240° 3 <strong>10</strong>. sin 15° 2−<br />

3<br />

11. tan 15° 7− 4 3 12. sin 120°<br />

13. tan 300° − 3 14. cos 15°<br />

15. tan 120° − 3 16. sin 60°<br />

2<br />

3<br />

2<br />

2+<br />

3<br />

2<br />

3<br />

2<br />

17. cos 60° 1 2 18. cos 150° − 3<br />

2<br />

19. tan 60° 3 20. sin 22.5°<br />

2−<br />

2<br />

2<br />

21. cos 600° − 1 2 22. tan 22.5° 3−<br />

2 2<br />

23. cos 240° − 1 2<br />

24. cos 22.5°<br />

2+<br />

2<br />

2<br />

25. Find cos 2θ if cos θ = − 2 5 and 90° < θ < 180°. − 17<br />

25<br />

26. Find cos θ if sin θ = − 24<br />

25 and 180° < θ < 270°. − 7<br />

27. Find tan<br />

2 θ if cos θ = 4 5 and 270° < θ < 360°. 1 3<br />

25<br />

28. Find sin θ 2 if cos θ = 1 2 and 0° < θ < 90°. 1 2<br />

29. The sound waves generated by a vibrating tuning fork<br />

can be modeled by the function y = 2sin θ. If the<br />

tuning fork vibrates twice as fast, the sound<br />

will be one octave higher. This is given by<br />

the function y = 2sin 2θ. Write the<br />

function in terms of θ to model the<br />

higher octave sound waves. y = 4 sin θ cos θ<br />

30. How could the identity for cos A 2 be<br />

derived from the identity for cos 2A<br />

Show your work. see margin<br />

<strong>10</strong>.8 Double-Angle and Half-Angle Identities 483

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!