29.01.2015 Views

Analysing spatial point patterns in R - CSIRO

Analysing spatial point patterns in R - CSIRO

Analysing spatial point patterns in R - CSIRO

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

19.4 Pairwise distances and the K function 125<br />

19.4 Pairwise distances and the K function<br />

The observed pairwise distances s ij = ||x i −x j || <strong>in</strong> the data pattern x constitute a biased sample<br />

of pairwise distances <strong>in</strong> the <strong>po<strong>in</strong>t</strong> process, with a bias <strong>in</strong> favour of smaller distances. For example,<br />

we can never observe a pairwise distance greater than the diameter of the w<strong>in</strong>dow.<br />

Ripley [54] def<strong>in</strong>ed the K-function for a stationary <strong>po<strong>in</strong>t</strong> process so that λK(r) is the expected<br />

number of other <strong>po<strong>in</strong>t</strong>s of the process with<strong>in</strong> a distance r of a typical <strong>po<strong>in</strong>t</strong> of the process.<br />

Formally<br />

K(r) = 1 E [n(X ∩ b(u,r) \ {u}) | u ∈ X]. (21)<br />

λ<br />

For a homogeneous Poisson process, <strong>in</strong>tuitively, the knowledge that u is a <strong>po<strong>in</strong>t</strong> of X does<br />

not affect the other <strong>po<strong>in</strong>t</strong>s of the process, so that X\{u} is conditionally a Poisson process. The<br />

expected number of <strong>po<strong>in</strong>t</strong>s fall<strong>in</strong>g <strong>in</strong> b(u,r) is λπr 2 . Thus for a homogeneous Poisson process<br />

K pois (r) = πr 2 (22)<br />

regardless of the <strong>in</strong>tensity.<br />

Numerous estimators of K have been proposed. Most of them are weighted and renormalised<br />

empirical distribution functions of the pairwise distances, of the general form<br />

̂K(r) =<br />

1<br />

̂λ 2 area(W)<br />

∑∑<br />

1 {||x i − x j || ≤ r}e(x i ,x j ;r) (23)<br />

i<br />

j≠i<br />

where e(u,v,r) is an edge correction weight. The choice of estimator does not seem to be very<br />

important, as long as some edge correction is applied.<br />

Aga<strong>in</strong> we usually compare the estimate ̂K(r) with the Poisson K function. Values ̂K(r) ><br />

πr 2 suggest cluster<strong>in</strong>g, while ̂K(r) < πr 2 suggests a regular pattern.<br />

In spatstat the function Kest computes several estimates of the K-function.<br />

> Gc Gc<br />

Function value object (class fv)<br />

for the function r -> K(r)<br />

Entries:<br />

id label description<br />

-- ----- -----------<br />

r r distance argument r<br />

theo K[pois](r) theoretical Poisson K(r)<br />

border K[bord](r) border-corrected estimate of K(r)<br />

trans K[trans](r) translation-corrected estimate of K(r)<br />

iso K[iso](r) Ripley isotropic correction estimate of K(r)<br />

--------------------------------------<br />

Default plot formula:<br />

. ~ r<br />

<br />

Recommended range of argument r: [0, 0.25]<br />

Available range of argument r: [0, 0.25]<br />

Copyright<strong>CSIRO</strong> 2010

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!