24.03.2015 Views

NPN Darlington silicon power transistor - Futurlec

NPN Darlington silicon power transistor - Futurlec

NPN Darlington silicon power transistor - Futurlec

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

2N6056<br />

<strong>NPN</strong> <strong>Darlington</strong> Silicon<br />

Power Transistor<br />

The <strong>NPN</strong> <strong>Darlington</strong> <strong>silicon</strong> <strong>power</strong> <strong>transistor</strong> is designed for<br />

general−purpose amplifier and low frequency switching applications.<br />

• High DC Current Gain —<br />

h FE = 3000 (Typ) @ I C = 4.0 Adc<br />

• Collector−Emitter Sustaining Voltage — @ 100 mA<br />

V CEO(sus) = 80 Vdc (Min)<br />

• Low Collector−Emitter Saturation Voltage —<br />

V CE(sat) = 2.0 Vdc (Max) @ I C = 4.0 Adc<br />

= 3.0 Vdc (Max) @ I C = 8.0 Adc<br />

• Monolithic Construction with Built−In Base−Emitter Shunt Resistors<br />

http://onsemi.com<br />

DARLINGTON<br />

8 AMPERE SILICON<br />

POWER TRANSISTOR<br />

80 VOLTS, 100 WATTS<br />

MAXIMUM RATINGS (1)<br />

Rating<br />

Symbol<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

Collector−Emitter Voltage ÎÎÎÎÎ<br />

V ÎÎÎÎÎÎÎÎÎÎÎÎÎ CEO ÎÎÎÎ 80 ÎÎÎÎ<br />

Vdc<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

Collector−Base Voltage<br />

ÎÎÎÎÎÎÎÎ<br />

80 ÎÎÎÎ Vdc<br />

Emitter−Base Voltage<br />

ÎÎÎÎÎ<br />

V ÎÎÎÎÎÎÎÎÎÎÎÎÎ EB ÎÎÎÎ 5.0 ÎÎÎÎ<br />

Vdc<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

Collector Current — Continuous<br />

Peak<br />

Base Current<br />

ÎÎÎÎÎ<br />

I ÎÎÎÎ<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

B<br />

120 mAdc<br />

ÎÎÎÎ<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

Total Device Dissipation @ T C = 25C<br />

Derate above 25C<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ<br />

ÎÎÎÎÎ ÎÎÎÎ<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

T J , T stg – 65 to 200ÎÎÎÎ<br />

+ C<br />

ÎÎÎÎ<br />

Operating and Storage Junction Temperature<br />

Range<br />

THERMAL CHARACTERISTICS<br />

Characteristic<br />

V CB<br />

I C<br />

P D<br />

Symbol<br />

Max<br />

8.0<br />

16<br />

100<br />

0.571<br />

Unit<br />

Adc<br />

Watts<br />

W/C<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

Thermal Resistance, Junction to Case<br />

(1) Indicates JEDEC Registered Data<br />

ÎÎÎÎ<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

R θJC<br />

Max<br />

Unit<br />

1.75 C/W<br />

ÎÎÎÎ<br />

CASE 1−07<br />

TO−204AA<br />

(TO−3)<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

ÎÎÎÎ<br />

ÎÎÎÎÎ<br />

100<br />

ÎÎÎÎ<br />

PD, POWER DISSIPATION (WATTS)<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 25 50 75 100 125 150 175 200<br />

T C , TEMPERATURE (°C)<br />

Figure 1. Power Derating<br />

Preferred devices are ON Semiconductor recommended choices for future use and best overall value.<br />

© Semiconductor Components Industries, LLC, 2006<br />

August, 2006 − Rev. 3<br />

1 Publication Order Number:<br />

2N6056/D


2N6056<br />

*ELECTRICAL CHARACTERISTICS (T C = 25C unless otherwise noted)<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

Characteristic<br />

Symbol<br />

Min Max Unit<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

OFF CHARACTERISTICS<br />

Collector−Emitter Sustaining Voltage (2)<br />

(I C = 100 mAdc, I B = 0)<br />

V CEO(sus)<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

Collector Cutoff Current<br />

(V CE = 40 Vdc, I B = 0)<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ<br />

ÎÎÎÎÎ<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

Collector Cutoff Current<br />

(V CE = Rated V CB , V BE(off) = 1.5 Vdc)<br />

(V CE = Rated V CB , V BE(off) = 1.5 Vdc, T C = 150C)<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ<br />

ÎÎÎÎÎ<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ<br />

ÎÎÎÎÎ<br />

ÎÎÎ<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

Emitter Cutoff Current<br />

ÎÎÎÎÎÎÎ<br />

— ÎÎÎÎmAdc<br />

(V BE = 5.0 Vdc, I C = 0)<br />

ON CHARACTERISTICS (2)<br />

DC Current Gain<br />

(I C = 4.0 Adc, V CE = 3.0 Vdc)<br />

(I C = 8.0 Adc, V CE = 3.0 Vdc)<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ<br />

ÎÎÎÎÎ<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

I CEO<br />

I CEX<br />

I EBO<br />

80<br />

—<br />

—<br />

—<br />

—<br />

0.5<br />

0.5<br />

5.0<br />

Vdc<br />

mAdc<br />

mAdc<br />

2.0 ÎÎÎ<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

ÎÎÎÎÎÎ<br />

ÎÎÎ<br />

ÎÎÎÎÎ<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

Collector−Emitter Saturation Voltage<br />

(I C = 4.0 Adc, I B = 16 mAdc)<br />

(I C = 8.0 Adc, I B = 80 mAdc)<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

ÎÎÎÎÎÎÎ<br />

ÎÎÎÎÎÎ<br />

ÎÎÎÎÎÎ<br />

ÎÎÎ<br />

ÎÎÎÎÎ<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

h FE<br />

V CE(sat)<br />

750<br />

100<br />

18000<br />

—<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

Base−Emitter Saturation Voltage<br />

ÎÎÎÎÎ<br />

V ÎÎÎ<br />

BE(sat) — 4.0<br />

ÎÎÎ<br />

Vdc<br />

ÎÎÎÎÎÎ<br />

ÎÎÎÎ<br />

ÎÎÎ<br />

ÎÎÎÎÎ<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

(I C = 8.0 Adc, I B = 80 mAdc)<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

Base−Emitter On ÎÎÎÎÎ<br />

Voltage<br />

V BE(on) ÎÎÎÎÎÎÎÎ<br />

— Vdc<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

(I C = 4.0 Adc, V CE<br />

ÎÎÎ<br />

ÎÎÎÎ<br />

ÎÎÎ<br />

ÎÎÎÎÎ<br />

= 3.0 Vdc)<br />

DYNAMIC CHARACTERISTICS<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

Magnitude of Common Emitter Small−Signal Short Circuit Current Transfer Ratio<br />

(I C = 3.0 Adc, V CE = 3.0 Vdc, f =<br />

ÎÎÎÎÎ<br />

|h fe |<br />

ÎÎÎ<br />

4.0 —<br />

ÎÎÎÎÎÎ<br />

—<br />

1.0 MHz)<br />

—<br />

—<br />

2.0<br />

3.0<br />

—<br />

Vdc<br />

2.8 ÎÎÎ<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

Output Capacitance<br />

ÎÎÎÎÎ<br />

C ÎÎÎ ÎÎÎ<br />

ob — pF<br />

ÎÎÎÎ<br />

ÎÎÎÎÎÎ<br />

ÎÎÎ<br />

ÎÎÎÎÎ<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

(V CB = 10 Vdc, I E = 0, f = 0.1 MHz)<br />

200 ÎÎÎ<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

Small−Signal Current ÎÎÎÎÎ<br />

Gain<br />

h fe<br />

300 — ÎÎÎ<br />

ÎÎÎ<br />

— ÎÎÎÎ<br />

(I C = 3.0 Adc, V CE<br />

ÎÎÎÎÎÎ<br />

ÎÎÎ<br />

ÎÎÎÎÎ<br />

= 3.0 Vdc, f = 1.0 kHz)<br />

ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ<br />

*Indicates JEDEC Registered Data.<br />

(2) Pulse Test: Pulse Width = 300 μs, Duty Cycle = 2.0%<br />

http://onsemi.com<br />

2


2N6056<br />

R B & R C VARIED TO OBTAIN DESIRED CURRENT LEVELS<br />

D 1 MUST BE FAST RECOVERY TYPE, e.g.,<br />

1N5825 USED ABOVE I B ≈ 100 mA<br />

MSD6100 USED BELOW I B ≈ 100 mA<br />

V 2<br />

approx<br />

+12 V<br />

0<br />

V 1<br />

approx<br />

−8.0 V<br />

t r , t f ≤ 10 ns<br />

DUTY CYCLE = 1.0%<br />

25 μs<br />

51<br />

Figure 2. Switching Times Test Circuit<br />

R B<br />

D 1<br />

+4.0 V<br />

R C<br />

TUT<br />

≈ 8.0 k ≈ 50<br />

for t d and t r , D 1 is disconnected<br />

and V 2 = 0<br />

V CC<br />

−30 V<br />

SCOPE<br />

For <strong>NPN</strong> test circuit reverse diode, polarities and input pulses.<br />

t, TIME (s) μ<br />

5.0<br />

3.0<br />

2.0<br />

1.0<br />

0.7<br />

0.5<br />

0.3<br />

0.2<br />

0.1<br />

0.07<br />

0.05<br />

0.1<br />

V CC = 30 V<br />

I C /I B = 250<br />

I B1 = I B2<br />

T J = 25°C<br />

t s<br />

t d @ V BE(off) = 0<br />

0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10<br />

I C , COLLECTOR CURRENT (AMP)<br />

Figure 3. Switching Times<br />

t f<br />

t r<br />

1.0<br />

0.7<br />

0.5<br />

D = 0.5<br />

r(t), TRANSIENT THERMAL<br />

RESISTANCE (NORMALIZED)<br />

0.3<br />

0.2<br />

0.1<br />

0.07<br />

0.05<br />

0.03<br />

0.02<br />

0.2<br />

0.1<br />

0.05<br />

0.02<br />

0.01<br />

SINGLE PULSE<br />

R θJC (t) = r(t) R θJC<br />

R θJC = 1.75°C/W 2N6056<br />

D CURVES APPLY FOR POWER<br />

PULSE TRAIN SHOWN<br />

READ TIME AT t 1<br />

T J(pk) − T C = P (pk) θ JC (t)<br />

P (pk)<br />

t 1<br />

t 2<br />

DUTY CYCLE, D = t 1 /t 2<br />

0.01 0.1<br />

0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 20 30 50 70 100 200 300 500 700 1000<br />

t, TIME (ms)<br />

Figure 4. Thermal Response<br />

http://onsemi.com<br />

3


2N6056<br />

ACTIVE−REGION SAFE OPERATING AREA<br />

I C , COLLECTOR CURRENT (AMP)<br />

50<br />

20<br />

10<br />

5.0<br />

2.0<br />

1.0<br />

0.5<br />

0.2<br />

0.1<br />

0.05<br />

1.0<br />

T J = 200°C<br />

0.5 ms<br />

1.0 ms<br />

5.0 ms<br />

SECOND BREAKDOWN LIMIT<br />

BONDING WIRE LIMIT<br />

THERMALLY LIMITED<br />

@ T C = 25°C (SINGLE PULSE)<br />

2.0 3.0 5.0 7.0 10 20 30 50 70 100<br />

V CE , COLLECTOR−EMITTER VOLTAGE (VOLTS)<br />

dc<br />

Figure 5. Safe Operating Area<br />

0.1 ms<br />

There are two limitations on the <strong>power</strong> handling ability of<br />

a <strong>transistor</strong>: average junction temperature and second<br />

breakdown. Safe operating area curves indicate I C − V CE<br />

limits of the <strong>transistor</strong> that must be observed for reliable<br />

operation; i.e., the <strong>transistor</strong> must not be subjected to greater<br />

dissipation than the curves indicate.<br />

The data of Figure 5 is based on T J(pk) = 200C;<br />

T C is variable depending on conditions. Second breakdown<br />

pulse limits are valid for duty cycles to 10% provided T J(pk)<br />

200C. T J(pk) may be calculated from the data in<br />

Figure 4. At high case temperatures, thermal limitations will<br />

reduce the <strong>power</strong> that can be handled to values less than the<br />

limitations imposed by second breakdown.<br />

hfe , SMALL−SIGNAL CURRENT GAIN<br />

10,000<br />

5000<br />

3000<br />

2000<br />

1000<br />

500<br />

300<br />

200<br />

100<br />

50<br />

30<br />

20<br />

10<br />

1.0<br />

T C = 25°C<br />

V CE = 3.0 Vdc<br />

I C = 3.0 Adc<br />

300<br />

30<br />

2.0 5.0 10 20 50 100 200 500 1000 0.1 0.2 0.5 1.0 2.0 5.0 10 20 50 100<br />

f, FREQUENCY (kHz)<br />

V R , REVERSE VOLTAGE (VOLTS)<br />

Figure 6. Small−Signal Current Gain<br />

C, CAPACITANCE (pF)<br />

200<br />

100<br />

70<br />

50<br />

C ib<br />

C ob<br />

Figure 7. Capacitance<br />

T J = 25°C<br />

http://onsemi.com<br />

4


2N6056<br />

hFE, DC CURRENT GAIN<br />

20,000<br />

10,000<br />

5000<br />

3000<br />

2000<br />

1000<br />

500<br />

300<br />

200<br />

0.1<br />

T J = 150°C<br />

25°C<br />

−55 °C<br />

I C , COLLECTOR CURRENT (AMP)<br />

V CE = 3.0 V<br />

VCE, COLLECTOR−EMITTER VOLTAGE (VOLTS)<br />

3.0<br />

2.6<br />

2.2<br />

1.8<br />

1.4<br />

I C = 2.0 A 4.0 A 6.0 A<br />

I B , BASE CURRENT (mA)<br />

T J = 25°C<br />

1.0<br />

0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 20 30<br />

Figure 8. DC Current Gain<br />

Figure 9. Collector Saturation Region<br />

3.0<br />

2.5<br />

T J = 25°C<br />

V, VOLTAGE (VOLTS)<br />

2.0<br />

1.5<br />

1.0<br />

V BE @ V CE = 3.0 V<br />

V BE(sat) @ I C /I B = 250<br />

V CE(sat) @ I C /I B = 250<br />

0.5<br />

0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10<br />

I C , COLLECTOR CURRENT (AMP)<br />

Figure 10. “On” Voltage<br />

http://onsemi.com<br />

5


2N6056<br />

PACKAGE DIMENSIONS<br />

CASE 1−07<br />

TO−204AA (TO−3)<br />

ISSUE Z<br />

V<br />

H<br />

E<br />

2<br />

1<br />

A<br />

N<br />

C<br />

−T− SEATING<br />

PLANE<br />

D 2 PL K<br />

0.13 (0.005) M T Q M Y M<br />

U<br />

L −Y−<br />

G B<br />

−Q−<br />

0.13 (0.005) M T<br />

Y<br />

M<br />

NOTES:<br />

1. DIMENSIONING AND TOLERANCING PER ANSI<br />

Y14.5M, 1982.<br />

2. CONTROLLING DIMENSION: INCH.<br />

3. ALL RULES AND NOTES ASSOCIATED WITH<br />

REFERENCED TO−204AA OUTLINE SHALL APPLY.<br />

INCHES MILLIMETERS<br />

DIM MIN MAX MIN MAX<br />

A 1.550 REF 39.37 REF<br />

B −−− 1.050 −−− 26.67<br />

C 0.250 0.335 6.35 8.51<br />

D 0.038 0.043 0.97 1.09<br />

E 0.055 0.070 1.40 1.77<br />

G 0.430 BSC 10.92 BSC<br />

H 0.215 BSC 5.46 BSC<br />

K 0.440 0.480 11.18 12.19<br />

L 0.665 BSC 16.89 BSC<br />

N −−− 0.830 −−− 21.08<br />

Q 0.151 0.165 3.84 4.19<br />

U 1.187 BSC 30.15 BSC<br />

V 0.131 0.188 3.33 4.77<br />

STYLE 1:<br />

PIN 1. BASE<br />

2. EMITTER<br />

CASE: COLLECTOR<br />

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice<br />

to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability<br />

arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.<br />

“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All<br />

operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights<br />

nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications<br />

intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should<br />

Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,<br />

and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death<br />

associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal<br />

Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.<br />

PUBLICATION ORDERING INFORMATION<br />

LITERATURE FULFILLMENT:<br />

Literature Distribution Center for ON Semiconductor<br />

P.O. Box 5163, Denver, Colorado 80217 USA<br />

Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada<br />

Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada<br />

Email: orderlit@onsemi.com<br />

N. American Technical Support: 800−282−9855 Toll Free<br />

USA/Canada<br />

Europe, Middle East and Africa Technical Support:<br />

Phone: 421 33 790 2910<br />

Japan Customer Focus Center<br />

Phone: 81−3−5773−3850<br />

http://onsemi.com<br />

6<br />

ON Semiconductor Website: www.onsemi.com<br />

Order Literature: http://www.onsemi.com/orderlit<br />

For additional information, please contact your local<br />

Sales Representative<br />

2N6056/D

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!