12.06.2015 Views

Protein biosynthesis: aminoacyl-tRNA synthetases and aminoacylation

Protein biosynthesis: aminoacyl-tRNA synthetases and aminoacylation

Protein biosynthesis: aminoacyl-tRNA synthetases and aminoacylation

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Protein</strong> <strong>biosynthesis</strong>:<br />

<strong>aminoacyl</strong>-<strong>tRNA</strong> <strong>synthetases</strong><br />

<strong>and</strong> <strong>aminoacyl</strong>ation<br />

Rya Ero<br />

07.09.09


Aminoacyl-<strong>tRNA</strong> <strong>synthetases</strong><br />

(AaRS)<br />

• charge <strong>tRNA</strong>s with amino acids (establish the<br />

link between nucleic <strong>and</strong> amino acids)<br />

• divided into two unrelated classes by based on<br />

structural <strong>and</strong> biochemical properties<br />

• highly specific - join 1 type of amino acid to all its<br />

corresponding (cognate) <strong>tRNA</strong>s<br />

• nomenclature:<br />

Nomenclature of <strong>tRNA</strong> <strong>synthetases</strong> <strong>and</strong> charged <strong>tRNA</strong>s.<br />

amino<br />

acid<br />

serine<br />

leucine<br />

cognate<br />

<strong>tRNA</strong><br />

<strong>tRNA</strong> Ser<br />

<strong>tRNA</strong> Leu<br />

<strong>tRNA</strong> Leu<br />

UUA<br />

cognate <strong>aminoacyl</strong> <strong>tRNA</strong><br />

synthetase<br />

seryl-<strong>tRNA</strong> synthetase<br />

leucyl-<strong>tRNA</strong> synthetase<br />

<strong>aminoacyl</strong> <strong>tRNA</strong><br />

(charged <strong>tRNA</strong>)<br />

seryl- <strong>tRNA</strong> Ser<br />

leucyl- <strong>tRNA</strong> Leu<br />

leucyl- <strong>tRNA</strong> Leu<br />

UUA


Comparison of class I <strong>and</strong> class II<br />

AaRSs<br />

Class I<br />

Class II<br />

Structure of the enzyme<br />

active site<br />

Interaction with the <strong>tRNA</strong><br />

Orientation of the bound<br />

<strong>tRNA</strong><br />

Amino acid attachment<br />

Enzymes for ...<br />

Parallel β-sheet<br />

(Rossman fold)<br />

Minor groove of the<br />

acceptor stem<br />

variable loop faces away<br />

from the enzyme<br />

To the 2′-OH of the<br />

terminal nucleotide of<br />

<strong>tRNA</strong><br />

Arg, Cys, Gln, Glu, Ile,<br />

Leu, Lys1, Met, Trp, Tyr,<br />

Val<br />

Antiparallel β-sheet<br />

Major groove of the<br />

acceptor stem<br />

variable loop faces the<br />

enzyme<br />

To the 3′-OH of the terminal<br />

nucleotide of the <strong>tRNA</strong><br />

Ala, Asn, Asp, Gly, His,<br />

Lys2, Phe, Pro, Thr, Ser


Classification <strong>and</strong> subunit structure of AaRSs in<br />

E. coli<br />

Class I<br />

Class II<br />

Arg (α) Ala (α 4<br />

)<br />

Cys (α) Asn (α 2<br />

)<br />

Gln (α) Asp (α 2<br />

)<br />

Glu (α) Gly (α 2<br />

β 2<br />

)<br />

IIe (α) His (α 2<br />

)<br />

Leu (α) Lys (α 2<br />

)<br />

Met (α) Phe (α 2<br />

β 2<br />

)<br />

Trp (α 2<br />

) Ser (α 2<br />

)<br />

Tyr (α 2<br />

) Pro (α 2<br />

)<br />

Val (α) Thr(α 2<br />

)


Evolution <strong>and</strong> sub-groups of AaRS


Class I active site (Rossman fold - 5 parallel β<br />

str<strong>and</strong>s connected by α helices), HIGH <strong>and</strong><br />

KMSKS signature sequences, extended<br />

conformation of bound ATP


Class II active site, 3 conserved motifs:<br />

• motif 1 - binding ATP (bent conformation) (α-helix)<br />

• motif 2 - amino acid binding (β-sheet)<br />

• motif 3 - dimerization


Comparison of class I <strong>and</strong> class II active sites


Recognition of <strong>tRNA</strong>s by AspRS (class II) <strong>and</strong> ArgRS<br />

(class I), shown as outlines. The <strong>tRNA</strong>Asp shown will<br />

bind to either. Sites on the opposite sides of <strong>tRNA</strong><br />

make contacts with the two AaRSs (blue balls -<br />

contacts with AspRS, yellow balls - with ArgRS).


Class I aaRSs interact with the 5’ nucleotides of the<br />

acceptor stem <strong>and</strong> class II aaRSs with the 3’<br />

nucleotides.<br />

The CCA arm of <strong>tRNA</strong> adopts different conformations<br />

in complexes with the class I <strong>and</strong> class II AaRSs.


The structure of the complex between threonyl-<strong>tRNA</strong><br />

synthetase (class II) <strong>and</strong> <strong>tRNA</strong>Thr reveals that the<br />

synthetase binds to both the acceptor stem <strong>and</strong> the<br />

anticodon loop of <strong>tRNA</strong>.


Glutaminyl-<strong>tRNA</strong> synthetase (class I) <strong>tRNA</strong>Gln<br />

complex reveals that the synthetase interacts with<br />

base pair G10:C25 in addition to the acceptor step<br />

<strong>and</strong> anticodon loop.


LysRS of most eukaryotes <strong>and</strong> bacteria is a class II<br />

AaRS, but in archaea class I AaRS (blue – highly<br />

conserved region, red – less conserved region).<br />

Recognice same regions of <strong>tRNA</strong>, <strong>aminoacyl</strong>ation<br />

mechanism differs.


Other functions of AaRS<br />

• nuclear proofreading of <strong>tRNA</strong>s prior to their<br />

export to cytoplasm (<strong>tRNA</strong> <strong>aminoacyl</strong>ation<br />

takes place in cucleus, AaRSs must be<br />

imported from cytoplasma)<br />

• involved in transcriptional <strong>and</strong> translational<br />

control of protein <strong>biosynthesis</strong><br />

• <strong>aminoacyl</strong>ation of <strong>tRNA</strong>-like structures (tmRNA<br />

a.k.a. 10SaRNA )


• inhibiors of AaRSs can be used as antibiotics<br />

• mupirocin inhibits IleRS of gram-positive (S.<br />

aureus) <strong>and</strong> gram-negative bacteria (H.<br />

influenzae)


In eukaryotes some AaRSs form complexes with<br />

other proteins, function not known


<strong>tRNA</strong>


<strong>tRNA</strong> identity elements<br />

• signals in <strong>tRNA</strong> required by AaRSs for correct<br />

<strong>aminoacyl</strong>ation, “second genetic code”<br />

• each AaRS must be able to distinguish the correct<br />

(cognate) <strong>tRNA</strong> from all the others<br />

• isoacceptor <strong>tRNA</strong>s have mostly the same set of<br />

identity determinants<br />

• swapping identity elements between <strong>tRNA</strong>s can<br />

cause the AaRS to add amino acid to the wrong<br />

<strong>tRNA</strong><br />

• identity of <strong>tRNA</strong> is determined by its primary,<br />

secondary <strong>and</strong> tertiary structure


Sequence elements:<br />

Mostly non-modified nucleosides (except E. coli<br />

<strong>tRNA</strong>Ile, <strong>tRNA</strong>Glu <strong>and</strong> <strong>tRNA</strong>Lys)<br />

• N73 discriminator position (except E. coli<br />

<strong>tRNA</strong>Thr <strong>and</strong> <strong>tRNA</strong>Glu)<br />

• anticodon nucleosides (except E. coli <strong>tRNA</strong>Ala,<br />

<strong>tRNA</strong>Ser <strong>and</strong> <strong>tRNA</strong>Leu)<br />

• first base pairs in acceptor stem (mostly N1:N72<br />

<strong>and</strong> N2:N71)<br />

Nucleosides in <strong>tRNA</strong> core are infrequently used<br />

as identity determinants


G3<br />

<strong>tRNA</strong> Ala<br />

U70<br />

G20<br />

A73<br />

G34 A36<br />

A35<br />

<strong>tRNA</strong> Phe<br />

G1<br />

G2<br />

AU3<br />

G73<br />

C72<br />

C71<br />

UA70<br />

C11<br />

G24<br />

G35 A36<br />

U37<br />

<strong>tRNA</strong><br />

fMet<br />

<strong>tRNA</strong> Ser


Structural elements:<br />

identity elements may also act indirectly through<br />

changing the conformation of <strong>tRNA</strong> recognized by<br />

AaRS<br />

• lengths of variable <strong>and</strong> D loops are important for E.<br />

coli <strong>tRNA</strong>Gln, <strong>tRNA</strong>Ala <strong>and</strong> yeast <strong>tRNA</strong>Phe.<br />

• long extra arm in <strong>tRNA</strong>Ser is important for<br />

recognition<br />

• major recognition element for E. coli AlaRS is<br />

G3:U70 wobble base pair in <strong>tRNA</strong>Ala. Not certain<br />

whether AlaRS recognices the specific chamical<br />

groups or the acceptor stem conformation induced<br />

by this base pair.


In case of <strong>tRNA</strong>Ala a<br />

single base pair (G3-<br />

U70) in the right<br />

context of the<br />

acceptor stem is<br />

necessary <strong>and</strong><br />

sufficient for<br />

recognition by AlaRS<br />

Microhelix recognized by AlaRS. A stem-loop<br />

containing just 24 nt corresponding to the <strong>tRNA</strong><br />

acceptor stem is <strong>aminoacyl</strong>ated by AlaRS.


• Anti-determinants: negative signals that keep<br />

<strong>tRNA</strong>s from <strong>aminoacyl</strong>ation by non-cognate<br />

AaRSs. Include modified nucleosides <strong>and</strong><br />

structural elements. May be located in different<br />

regions of <strong>tRNA</strong><br />

• Permissive elements: not directly involved in<br />

determining the identity of <strong>tRNA</strong>, form a context<br />

for optimal recognition of <strong>tRNA</strong> identity elements<br />

by AaRSs<br />

Different identity elements may have additive,<br />

cooperative, anti-cooperative, or independent<br />

effects


Conserved nucleosides (left) <strong>and</strong> identity<br />

elements (right) in E. coli <strong>tRNA</strong>s


• identity elements mostly clustered in acceptor<br />

stem <strong>and</strong> anticodon region<br />

• these two regions come into close contact with<br />

AaRSs<br />

• aaRSs mostly contact with <strong>tRNA</strong> hydrogen<br />

bonds are formed beween identity nucleosides<br />

in <strong>tRNA</strong> <strong>and</strong> amino acids in AaRSs<br />

• stronger <strong>and</strong> weaker identity elements exist


Aminoacylation reaction<br />

• there is a different AaRS for each amino acid (20<br />

in all) in most cells<br />

• recognition of amino acid <strong>and</strong> <strong>tRNA</strong> varies<br />

among AaRSs<br />

• all AaRSs catalyze the same 2-step ATPdependent<br />

reaction<br />

(1) aaRS + ATP:Mg2+ + aa ↔ aaRS:aa:AMP + PPi :Mg2+<br />

(2) aaRS:aa:AMP + <strong>tRNA</strong> ↔ aaRS + aa-<strong>tRNA</strong> + AMP


Step 1 – activation of amino acid<br />

aa + ATP + AaRS ↔ AaRS·aa-AMP + PPi<br />

carboxyl oxygen of amino acid reacts<br />

with α-phosphate of ATP,<br />

<strong>aminoacyl</strong>adenylate (high energy<br />

intermediate) is formed <strong>and</strong> PPi<br />

released<br />

Step 2 – A76 of uncharged <strong>tRNA</strong> reacts<br />

with <strong>aminoacyl</strong>adenylate<br />

AaRS·aa-AMP + <strong>tRNA</strong> ↔ AaRS + aa<strong>tRNA</strong><br />

+AMP<br />

nucleophilic attac of 2’ or 3’ hydroxyl<br />

group of <strong>tRNA</strong> 3’-terminal adenosine to<br />

carboxyl grooup of <strong>aminoacyl</strong>adenylate,<br />

ester bond is formed between <strong>tRNA</strong><br />

<strong>and</strong> amino acid


The result of <strong>aminoacyl</strong>ation by a class II AaRS, the<br />

amino acid being attached via its -COOH group to<br />

the 3′-OH of the terminal nucleotide of the <strong>tRNA</strong>. A<br />

class I AaRS attaches the amino acid to the 2′-OH<br />

group.


adenosine P P P +<br />

ATP<br />

Step 1<br />

O<br />

C<br />

O<br />

P<br />

P<br />

CH<br />

R<br />

+<br />

NH3<br />

amino acid<br />

O<br />

C C A<br />

+<br />

O C CH NH<br />

P P 3<br />

OH<br />

R<br />

2-<strong>aminoacyl</strong> <strong>tRNA</strong><br />

adenosine P<br />

O<br />

+<br />

C CH NH3<br />

~ O R <strong>aminoacyl</strong> adenylate<br />

or<br />

Step 2<br />

C C A<br />

P<br />

P<br />

OH<br />

OH<br />

C C A<br />

P<br />

P<br />

O C CH<br />

+<br />

NH3<br />

R<br />

OH<br />

O<br />

3-<strong>aminoacyl</strong> <strong>tRNA</strong>


• some class I AaRS (GlnRS, GluRS, ArgRS <strong>and</strong> class<br />

I LysRS) require prior binding of <strong>tRNA</strong> for step 1<br />

• binding of <strong>tRNA</strong> occurs in presence of polyamine or<br />

divalent cation (Mg2+)<br />

• hydrolysis of the pyrophosphate to inorganic<br />

phosphate (by pyrophosphatase) drives the reaction<br />

forward<br />

• class I AaRSs join the aa to the 2'-OH, subsequent<br />

transesterification reaction shifts the amino acid to<br />

the 3' position<br />

• the amino acid-<strong>tRNA</strong> bond is of ‘higher energy’ than<br />

the peptide bond which helps the ribosome<br />

transpeptidate


Structure of the large fragment of ThrRS reveals<br />

that the amino acid-binding site includes a zinc ion<br />

that coordinates threonine through its amino <strong>and</strong><br />

hydroxyl groups.


Active site structure of ThrRS, recognices 3’<br />

CCA sequence, which enters a “pocket”


Accuracy of <strong>aminoacyl</strong>ation<br />

Accurate amino acid <strong>and</strong> <strong>tRNA</strong> recognition by<br />

AaRSs is crucial for protein synthesis<br />

Recognition of <strong>tRNA</strong>s by the synthetase is<br />

controlled at two steps:<br />

• AaRS has a greater affinity for its cognate <strong>tRNA</strong><br />

• <strong>aminoacyl</strong>ation of the incorrect <strong>tRNA</strong> is very slow<br />

Selection based on the differences of the rates is<br />

known as kinetic proofreading


AaRSs use chemical properties, size <strong>and</strong> shape<br />

to distinguish between amino acids<br />

• In case of HisRS, ProRS <strong>and</strong> LysRS only<br />

binding of the correct amino acid induces<br />

conformational change in AaRSs required for<br />

<strong>aminoacyl</strong>ation reaction to occur<br />

• moving parts are KMSKS sequence (class I) or<br />

loop of motif 2 (class II)


• AaRS have difficulties discriminating some<br />

amino acids (for example Ile <strong>and</strong> Val are similar)<br />

• AaRS should make many mistakes(Linus<br />

Pauling, 1958)<br />

ValRS incorporates Ile instead of Val into<br />

proteins only with the frequency of 1:3000


Absolute accuracy of <strong>aminoacyl</strong>ation cannot be<br />

achieved<br />

• <strong>tRNA</strong>Lys is <strong>aminoacyl</strong>ated by LysRS with:<br />

Arg 1:1600<br />

Thr 1:16000<br />

Met 1:32000<br />

Leu 1:132000<br />

Cys 1:256000<br />

Ser 1:750000<br />

The frequency of errors in <strong>aminoacyl</strong>ation is less<br />

than 10 -5


<strong>tRNA</strong> editing<br />

Some AaRSs remove their own coupling errors<br />

through hydrolytic editing<br />

• Pre-transfer editing – non-cognate<br />

<strong>aminoacyl</strong>adenylate is hydrolyzed befor its<br />

transfer to <strong>tRNA</strong><br />

• Post-transfer editing – ester bond between<br />

amino acid <strong>and</strong> non-cognate <strong>tRNA</strong> is hydrolyzed


• some AaRS (IleRS, ValRS, LeuRS <strong>and</strong> ThrRS)<br />

have editing sites in addition to acylation sites<br />

• these two sites function as a a double sieve to<br />

ensure a very high fidelity<br />

• wrong amino acid cannot bind to active site <strong>and</strong><br />

correct amino acid is rejected by the editing site<br />

• hydrolysis of correct product is slow <strong>and</strong> hydrolysis<br />

of the “wrong” product is quick<br />

• in case of IleRS 80% of editing is pre-transfer, in<br />

case of ValRS <strong>and</strong> LeuRS mostly post-transfer<br />

editing (double sieve)


The flexible CCA arm of an <strong>aminoacyl</strong>-<strong>tRNA</strong> can move<br />

the amino acid between the activation site <strong>and</strong> the<br />

editing site. If the amino acid fits well into the editing<br />

site, the amino acid is removed by hydrolysis.


Pyrococcus horikoshii LeuRS-<strong>tRNA</strong>Leu complex


• Val is rejected based on<br />

chemical properties (Zn ion<br />

in active site)<br />

• Ser is rejected based on<br />

size<br />

Activation <strong>and</strong> editing sites in threonyl-<strong>tRNA</strong><br />

synthetase (class II)


Unusual <strong>aminoacyl</strong>ation<br />

mechanisms<br />

Exceptions to the one-to-one rule (Francis<br />

Crick 1958) that there is a specific AaRS for<br />

each amino acid (there should be 20 different<br />

AaRS in every organism)<br />

1. Two different AaRSs may be expressed for<br />

single amino acid:<br />

• two LysRS genes in E. coli – lysU <strong>and</strong> lysS<br />

• two ThrRS <strong>and</strong> TyrRS in B. Subtilis


2. When GlnRS is missing (B. subtilis)<br />

then Gln-<strong>tRNA</strong>Gln is formed in 2 steps:<br />

ND-<br />

GluRS<br />

Glu + <strong>tRNA</strong> Gln + ATP Glu-<strong>tRNA</strong> Gln + AMP + PPi<br />

AdT<br />

Gln + Glu-<strong>tRNA</strong> Gln + ATP Gln-<strong>tRNA</strong> Gln + ADP + Pi + Glu<br />

D-GluRS Glu-<strong>tRNA</strong> Glu<br />

ND-GluRS Glu-<strong>tRNA</strong> Glu <strong>and</strong> Glu-<strong>tRNA</strong> Gln<br />

AdT is an amidotransferase<br />

EF-Tu does not bind Glu-<strong>tRNA</strong>Gln, avoiding<br />

misincorporation of Glu instead of Gln into proteins


RS<br />

D-GluRS: C36 – Arg358 discriminates <strong>tRNA</strong> Glu <strong>and</strong> <strong>tRNA</strong> Gln<br />

ND-GluRS: Glu instead of Arg cannot discriminate <strong>tRNA</strong> Glu from <strong>tRNA</strong> Gln


3. When AsnRS is missing (in T. thermophilus<br />

<strong>and</strong> D. radiodurans in addition to the lack of<br />

GlnRS) then Asn-<strong>tRNA</strong>Asn is formed in 2 seps:<br />

ND-<br />

AspRS<br />

<strong>tRNA</strong> Asn Asp-<strong>tRNA</strong> Asn Asn-<strong>tRNA</strong> Asn<br />

AdT<br />

D-AspRS Asp-<strong>tRNA</strong> Asp<br />

ND-AspRS Asp-<strong>tRNA</strong> Asp<br />

<strong>and</strong> Asp-<strong>tRNA</strong> Asn<br />

Amidotransferase (AdT) is same for both Gln<strong>tRNA</strong>Gln<br />

<strong>and</strong> Asp-<strong>tRNA</strong>Asp synthesis, amido<br />

group donor is also glutamine


4. Some thermophilic archaea (Methanococcus<br />

jannaschii) lack cysS gene encoding for<br />

CysRS<br />

Possess unique ProCysRS synthetase able to<br />

generate both Pro-<strong>tRNA</strong>Pro <strong>and</strong> Cys-<strong>tRNA</strong>Cys


5. Selenosysteine - the 21-st amino acid <strong>and</strong><br />

Sec-<strong>tRNA</strong>Sec formation<br />

<strong>tRNA</strong> Sec SerRS<br />

Ser-<strong>tRNA</strong> Sec selA<br />

Sec-<strong>tRNA</strong> Sec<br />

selD


•<strong>aminoacyl</strong>ation of <strong>tRNA</strong>Sec by SerRS (Ser-<strong>tRNA</strong>Sec)<br />

•selenocysteine synthase SelA converts to aminoacryl<strong>tRNA</strong>Sec<br />

•SelD adds selenide to aminoacryl group <strong>and</strong> Sec<strong>tRNA</strong>Sec<br />

is formed


6. Initiator fMet<strong>tRNA</strong><br />

is<br />

formylated Met<strong>tRNA</strong><br />

Synthesized by<br />

methionyl-<strong>tRNA</strong><br />

formyltransferase<br />

(MTF)


MTF


Additional reading:<br />

1. TiBS, July 2000, vol 25 “The adaptor<br />

hypothesis revisited”<br />

2. TiBS, June 1997, vol 22 “Structural <strong>and</strong><br />

functional considerations of the <strong>aminoacyl</strong>ation<br />

reaction”<br />

3. BioEssays, Oct. 1993 No 10 “Aminoacyl-<strong>tRNA</strong><br />

synthetase family: Modules at work”<br />

4. Current opinion in structural biology, Feb. 2000<br />

vol10 No1 “The many routes of bacterial <strong>tRNA</strong>s<br />

after <strong>aminoacyl</strong>ation”

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!