12.07.2015 Views

Bath Institute For Complex Systems - ENS de Cachan - Antenne de ...

Bath Institute For Complex Systems - ENS de Cachan - Antenne de ...

Bath Institute For Complex Systems - ENS de Cachan - Antenne de ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Lemma 3.12 (First Strang Lemma). Let Assumptions A1-A3 hold. Then, for almost all ω ∈ Ω,|u(ω, ·) − ũ h (ω, ·)| H 1 (D) ≤{ (inf 1 + a )max(ω)|u(ω, ·) − v h |v h ∈V h a min (ω)H 1 (D)+1a min (ω)|b ω (v h , w h ) −sup˜b}ω (v h , w h )|.w h ∈V h|w h | H 1 (D)Proposition 3.13. Let Assumptions A1–A4 hold, for some 0 < t < 1 and p ∗ ∈ (0, ∞]. Then, forall p < p ∗ , s < t with s ≠ 1/2 and 0 < h < 1, we have‖u − ũ h ‖ L p (Ω,H0 1(D)) C 3.13 ‖f‖ L p∗(Ω,H s−1 (D)) h s a 5/2max‖a‖ C, where C 3.13 :=t (D)∥ a 9/2 ∥minwith q = p∗ pp ∗−p. If Assumptions A2 and A3 hold with t = 1, thenProof. We first note that, for all w h ∈ V h ,∣∣b ω (v h , w h ) − ˜b ∑ω (v h , w h ) ∣ =∣‖u − ũ h ‖ L p (Ω,H 1 0 (D)) C 3.13 ‖f‖ L p∗(Ω,L 2 (D)) h .≤ ∑τ∈T h∫ττ∈T h∫τ(a(ω, x) − a(ω, x τ )) ∇v h · ∇w h dx∣∥L q (Ω)|a(ω, x) − a(ω, x τ )||x − x τ | t |x − x τ | t |∇v h (ω) · ∇w h | dx≤ |a(ω)| C t (D) ht |v h | H 1 (D) |w h | H 1 (D) .Hence, it follows from Lemma 3.12 that, for almost all ω ∈ Ω,{ (|u(ω, ·) − ũ h (ω, ·)| H 1 (D) ≤ inf 1 + a )max(ω)|u(ω, ·) − v h |v h ∈V h a min (ω)H 1 (D) + h |a(ω)| }t C t (D)|v h |a min (ω) H 1 (D) .Let us now make the particular choice v h := u h (ω, ·) ∈ V h , i.e. the solution of (3.8). Then itfollows from (3.9) and (3.10) and the fact that h t < h s , for any s < t ≤ 1 and h < 1, that( (|u(ω, ·) − ũ h (ω, ·)| H 1 (D) 1 + a )max(ω)C 3.1 (ω) C 3.8 (ω) + |a(ω)| )C t (D)a min (ω)a min (ω) 2 ‖f(ω, ·)‖ H s−1 (D) h s .The result follows again via an application of Höl<strong>de</strong>r’s inequality.Remark 3.14. To recover the O(h 2s ) convergence for the L 2 -error ‖u − ũ h ‖ L p (Ω,L 2 (D)) in thecase of quadrature, we require additional regularity of the coefficient function a. If a(ω, ·) is atleast C 2s , then we can again obtain O(h 2s ) convergence even with quadrature, using duality asin Corollary 3.10. This is for example the case in the context of lognormal random fields withGaussian covariance kernel, where a(ω, ·) ∈ C ∞ (D). In the context of the exponential covariancekernel the L 2 -convergence rate is always boun<strong>de</strong>d by O(h 1/2−δ ), due to the lack of regularity in a.13

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!