12.07.2015 Views

Bath Institute For Complex Systems - ENS de Cachan - Antenne de ...

Bath Institute For Complex Systems - ENS de Cachan - Antenne de ...

Bath Institute For Complex Systems - ENS de Cachan - Antenne de ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

We now extend A i to R d +. Since we assumed that supp(χ i ) is compact in D i , we can choose Q iand ˜Q i such that supp(v i ) ⊂ Q i ⊂ Q i ⊂ ˜Q i ⊂ ˜Q i ⊂ Q and consi<strong>de</strong>r ψ ∈ C ∞ (R d , [0, 1]) such thatψ = 0 on Q i and ψ = 1 on ˜Qci . We <strong>de</strong>fine the extension Ai of A i on R d + by{Ai (x)(1 − ψ(x)) + aA i (x) :=min ψ(x)I d if x ∈ Q +a min ψ(x)I d if x ∈ Q c +Analogously to the case of a in Lemma A.4, we can <strong>de</strong>duce that, for any y ∈ R d + and ξ ∈ R d ,A i (y)ξ ·ξ a min |ξ| 2 , A max = ‖A i ‖ C 0 (R d + ,S d(R)) a maxand ‖A i (y)‖ C t (R d + ,S d(R)) ‖a‖ C t (D) . (A.6)We now <strong>de</strong>fine an extension of F i on R d +. Note again that we can choose an open set G i such thatsupp(F i ) ⊂ G i ⊂ G i ⊂ Q and extend F i to all of R d + such that ‖F i ‖ H s−1 (R d + ) ‖F i‖ H s−1 (Q + ). Finallywe continue v i by 0 on R d +, which yields v i ∈ H 1 0 (Rd +). Moreover, since A i = A i on supp(v i ) ⊂ Q i ,v i is then the weak solution on R d + of−div(A i (x)∇v i (x)) = F i (x),which enables us to apply Lemma 3.3 and to obtain that v i ∈ H 1+s (R d +) and‖v i ‖ H 1+s (R d + ) A )max(|AA 2 i | C t (R d +min,S d(R)) |v i| H 1 (R d + ) + ‖F i‖ H s−1 (R d + )+ A maxA min‖v i ‖ H 1 (R d + ) .Recalling that u i (x) = v i (α i (x)) for any x ∈ D ∩ D i and using the bounds in (A.6), as well as thetransformation theorem [18, Theorem 6.2.17], we finally get‖u i ‖ H 1+s (D) a ()maxa 2 ‖a‖ C t (D) ‖u‖ H 1 (D∩D i ) + ‖g i ‖ H s−1 (D∩D i ) + a max‖u‖mina H 1 (D)mina max ‖a‖ C t (D)‖f‖ H s−1 (D) .a 3 min∑The result in Proposition 3.1 follows directly from Lemmas A.4 and A.5, if we recall that u = m u i .References[1] I. Babuška, F. Nobile, and R. Tempone. A stochastic collocation method for elliptic partialdifferential equations with random input data. SIAM J. Numer. Anal., 45(3):1005–1034, 2007.[2] I. Babuška, R. Tempone, and G. E. Zouraris. Galerkin finite element approximations ofstochastic elliptic partial differential equations. SIAM J. Numer. Anal., 42(2):800–825, 2004.[3] A. Barth, C. Schwab, and N. Zollinger. Multi–level Monte Carlo finite element method forelliptic PDE’s with stochastic coefficients. SAM Research Reports 2010-18, ETH Zürich, 2010.[4] S. C. Brenner and L. R. Scott. The mathematical theory of finite element methods, volume 15of Texts in Applied Mathematics. Springer, New York, third edition, 2008.[5] J. Charrier. Strong and weak error estimates for the solutions of elliptic partial differentialequations with random coefficients. Technical Report HAL:inria-00490045, Hyper Articles enLigne, INRIA, 2010. Available at http://hal.inria.fr/inria-00490045/en/.i=028

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!