13.07.2015 Views

Bursting and Spalling in Pretensioned U-Beams - Ferguson ...

Bursting and Spalling in Pretensioned U-Beams - Ferguson ...

Bursting and Spalling in Pretensioned U-Beams - Ferguson ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Figure 2.57 Harped str<strong>and</strong>s <strong>in</strong> webs of Wash<strong>in</strong>gton trapezoidal tub girder(Tadros, 2005)....................................................................................................... 92Figure 2.58 Transverse re<strong>in</strong>forcement <strong>in</strong> end region of WSDOT trapezoidal tub girder(after AASHTO LRFD, 2008, Interim) .................................................................. 93Figure 2.59 Transverse re<strong>in</strong>forcement <strong>in</strong> the end block of a Texas U-beam, divided<strong>in</strong>to that provided with<strong>in</strong> the projected areas of the void & the webs .................. 94Figure 2.60 St<strong>and</strong>ard end-region re<strong>in</strong>forcement for U-beams(54 <strong>in</strong>. deep, 78 – 0.5-<strong>in</strong>. str<strong>and</strong>s) vs. code requirements(count<strong>in</strong>g all transverse re<strong>in</strong>forcement <strong>in</strong> end block) ........................................... 95Figure 2.61 St<strong>and</strong>ard end-region re<strong>in</strong>forcement for U-beams(54 <strong>in</strong>. deep, 78 – 0.5-<strong>in</strong>. str<strong>and</strong>s) vs. code requirements(neglect<strong>in</strong>g transverse re<strong>in</strong>forcement with<strong>in</strong> projection of void <strong>in</strong> end block) ..... 95Figure 3.1 Elastic stress trajectories <strong>in</strong> a post-tensioned concrete beam, illustrat<strong>in</strong>g thedivision <strong>in</strong>to D- <strong>and</strong> B-regions (after Schlaich, Schäfer & Jennewe<strong>in</strong>, 1987) ..... 98Figure 3.2 Concrete modulus equations from ACI 318 & 363 ...................................... 100Figure 3.3 Tension-zone longitud<strong>in</strong>al re<strong>in</strong>forcement ..................................................... 103Figure 3.4 Beam 1 & 2 design summary ........................................................................ 103Figure 3.5 U-beam end-block design alternatives for skewed ends ............................... 106Figure 3.6 Cyl<strong>in</strong>der compressive-strength test<strong>in</strong>g ......................................................... 107Figure 3.7 Schematic for splitt<strong>in</strong>g tensile-strength test (after Tuchsherer, 2007) ......... 108Figure 3.8 Maturity-age concept (Kehl & Carrasquillo, 1998) ..................................... 109Figure 3.9 Sure Cure temperature-match-cur<strong>in</strong>g system (Tuchsherer, 2007) ............... 110Figure 3.10 Re<strong>in</strong>forc<strong>in</strong>g bar used <strong>in</strong> U-beam specimens ............................................... 112Figure 3.11 Re<strong>in</strong>forc<strong>in</strong>g-bar tension test<strong>in</strong>g <strong>in</strong> 60-kip test mach<strong>in</strong>e .............................. 113Figure 3.12 Extensometer on re<strong>in</strong>forc<strong>in</strong>g-bar sample ................................................... 113Figure 3.13 Failure modes for Grade 60 rebar & deformed wire ................................. 114Figure 3.14 Typical stra<strong>in</strong>-gage <strong>in</strong>stallation along pitched wire with<strong>in</strong> str<strong>and</strong>(O’Callaghan, 2007) ........................................................................................... 115Figure 3.15 Extensometer & stra<strong>in</strong> gage on str<strong>and</strong> sample ........................................... 116Figure 3.16 Str<strong>and</strong>s epoxied <strong>in</strong>to black pipe for tensile-strength test<strong>in</strong>g....................... 117Figure 3.17 Typical str<strong>and</strong> failure mode ........................................................................ 118Figure 3.18 Setup used for Beam 2 elastic-modulus test<strong>in</strong>g for str<strong>and</strong> ......................... 119Figure 3.19 Crack map for Beam 0, as received five months after cast & release ........ 120Figure 3.20 Typical stra<strong>in</strong>-gage placement <strong>in</strong> beam end-region ................................... 121Figure 3.21 Instrumentation for transverse re<strong>in</strong>forcement with<strong>in</strong> end block ................ 122Figure 3.22 Str<strong>and</strong> stra<strong>in</strong>-gage <strong>in</strong>stallation process (Beam 2, 45°-skewed end) ........... 124Figure 3.23 Completed str<strong>and</strong> stra<strong>in</strong> gag<strong>in</strong>g (<strong>in</strong>set from O’Callaghan, 2007) ............. 124Figure 3.24 Str<strong>and</strong> stra<strong>in</strong>-gage locations (Beam 2) ....................................................... 125Figure 3.25 Interface board used to connect stra<strong>in</strong>-gage leads to quarter-bridges ...... 126Figure 3.26 Heuristic for check<strong>in</strong>g quarter-bridge channels ........................................ 126Figure 3.27 Heuristic for check<strong>in</strong>g half-bridge channels .............................................. 127Figure 3.28 Typical thermocouple <strong>in</strong>strumentation (Beam 2) ....................................... 128Figure 3.29 Typical thermocouple data (after Tuchscherer, 2007) ............................... 128xiv

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!