03.07.2018 Views

atw 2018-07

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

nucmag.com<br />

<strong>2018</strong><br />

6/7<br />

369<br />

AMNT <strong>2018</strong>:<br />

Opening Address<br />

374 ı AMNT <strong>2018</strong>: Best Paper<br />

TESPA-ROD Code Prediction of the Fuel<br />

Rod Behaviour During Long-term Storage<br />

379 ı Research and Innovation<br />

Safety Assessment of the Research Reactors FRM II and FR MZ<br />

ISSN · 1431-5254<br />

24.– €<br />

389 ı Energy Policy, Economy and Law<br />

The Unnoticed Loss of Carbon-free Generation in the United States<br />

404 ı Decommissioning and Waste Management<br />

Radiological Characterization of High-level Radioactive Waste


nucmag.com<br />

2017 edition<br />

available!<br />

The Whole Story of<br />

Nuclear Power<br />

– 60 Years on Disc<br />

<strong>atw</strong>-digital | 60 years: 1956 to 2015<br />

<strong>atw</strong>-digital<br />

| 60 years: 1956 to 2015<br />

Single User License<br />

nucmag.com<br />

© INFORUM ı Berlin | 2017<br />

Expert’s articles, reports, interviews and news covering all<br />

technical, economic and political topics of nuclear power<br />

and technology.<br />

Read the articles on your computer or print them out.<br />

Navigate quickly to the desired papers with a few mouse clicks.<br />

Convenient search function in all papers as full-text search<br />

and/or deliberate search for authors and documents titles.<br />

I would like to order (single user license),<br />

payment by invoice:<br />

<strong>atw</strong>-digital 799.– €*<br />

| 60 years: 1956 to 2015 599.– €*<br />

Surname, First Name<br />

Organization/Order no.<br />

DAtF-/KTG-Member (yes/no)*<br />

Also available on Disc:<br />

| 5 years: 2012 to 2016 each 199.– €*<br />

149.– €*<br />

| 1 year: 2017 69.– €*<br />

49.– €*<br />

Street<br />

Postal Code City Country<br />

Telephone/E-mail<br />

VAT no. (EU countries except Germany)<br />

Please send your order to:<br />

INFORUM Verlags- und<br />

Verwaltungsgesellschaft mbH<br />

Robert-Koch-Platz 4<br />

10115 Berlin, Germany<br />

Fax-No. +49 30 498555-18<br />

or order online: www.nucmag.com/shop<br />

Prices excluding postage.<br />

Prices including 19% VAT for Germany and all EU member states<br />

without VAT number. For EU member states with VAT number and all<br />

other countries VAT will not be added.<br />

I order <strong>atw</strong>-digital | as indicated on the left and agree<br />

to the terms and cancellation rights referred to below.<br />

Date<br />

Signature<br />

Cancellation: This order may be cancelled within 14 days. A notice<br />

must be sent to INFORUM Verlags- und Verwaltungsgesellschaft mbH,<br />

Robert-Koch-Platz 4, 10115 Berlin, Germany, within this period.<br />

The deadline will be observed by due mailing. Prompt dispatch of the<br />

notification is sufficient for compliance with the cancellation conditions.<br />

*<br />

Special price for DAtF- and KTG-Members.


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

Summary: Nuclear Power 2017 | <strong>2018</strong>:<br />

Figures, Facts, Assessments and Two Remarkable Conclusions<br />

With the available data, the middle of the year is certainly a suitable time for a summary and an assessment of the<br />

development of nuclear energy in the course of the previous year. But first, for a given reason, two current and certainly<br />

noteworthy findings.<br />

• With the commissioning of the 1,086 MWe (gross)<br />

Yangjiang-5 nuclear power plant in China, not only has<br />

the country's 40 th nuclear power plant gone into operation,<br />

the total number of nuclear power plants in operation<br />

worldwide has also reached another historic high.<br />

After the Leningrad 2-1 (1,199 MWe) and Rostov-4<br />

(1,<strong>07</strong>0 MWe) units went into operation in Russia in<br />

<strong>2018</strong>, 451 nuclear power plants are currently in operation<br />

worldwide. With 421,553 MWe gross output and<br />

398,094 MWe net output, there is also more nuclear<br />

energy capacity available worldwide than ever before.<br />

• Additionally, the contribution of nuclear power plants<br />

increases in terms of security of supply and system<br />

stability, depending on the structure of production in<br />

the countries. Nuclear power plants have outstanding<br />

characteristics in terms of load following capability.<br />

With high possible load change rates and large power<br />

strokes, i.e. the difference between minimum and<br />

maximum power, nuclear power plants together with<br />

other conventional power plants are not stopgap or<br />

fillers in power supply systems, but the basis for grid<br />

stability and integration of the volatile feed from<br />

renewables. Nuclear power plants and conventional<br />

power plants supply electricity when the renewables<br />

are not available and their controllability opens the way<br />

for renewable electricity when it is available at high<br />

output due to the whims of the nature.<br />

Now, back to the summary for 2017: With 449 nuclear<br />

power plants one unit less were in operation than at the end<br />

of the previous year. In particular, four units became critical<br />

and/or were synchronised for the first time with the grid:<br />

Fuqing-4 and Tianwan-3 in China, Chasnupp-4 in Pakistan,<br />

and Rostov-4 in Russia. Five units stopped operation in<br />

2017 and were finally shutdown: in Germany, after 33 years<br />

of successful operation, the Gundremmingen-B NPP was<br />

shutdown due to the political decision in 2011; in Japan,<br />

the prototype fast breeder reactor Monju ceased operation;<br />

in Sweden the Oskarshamn-1 unit and in Spain, after five<br />

years of unsuccessful waiting for an application for further<br />

operation, the Santa Maria de Garona plant stopped<br />

electricity production.<br />

For electricity generation capacities, the global nuclear<br />

energy gross capacity of 420,383 MWe exceeded the<br />

400,000-MW-mark again and the capacity was quasi on<br />

the same level as in 2016 with 420,534 MWe due to high<br />

capacities of the new reactors. Even, the net capacity<br />

increased from 397,003 MWe in 2016 up to 397,193 MWe<br />

with a plus of 190 MWe.<br />

A further increase can also be registered for electricity<br />

generation. The net production of 2,490 TWh is about 1 %<br />

higher compared to last year with 2,477 TWh. Due to the<br />

35 non-operating nuclear power plants in Japan in 2017<br />

this is considerably lower than before the Fukushima<br />

incident in 2011. However, two nuclear power units,<br />

Takahama-3 and Takahama-4, were reconnected to the<br />

grid in Japan in 2017. This means that a total of seven plants<br />

have been put back into operation in Japan since 2011.<br />

Thus, the nuclear power share to the overall energy<br />

production remains at 11 %, the share of nuclear energy in<br />

the entire global energy supply at about 4.5 % – these are<br />

certainly two remarkable figures: The currently 414 active<br />

nuclear power plants are able to provide electricity to<br />

every tenth person worldwide or every twentieth person<br />

worldwide covers its energy needs with nuclear power ...<br />

as mentioned: Regionally and in each single nuclear<br />

energy using countries the share of nuclear power in the<br />

electricity production differs with a range of 4 % in China<br />

– which means a doubling in the past five years – up to<br />

almost 28 % in France. 13 states cover more than 30 % of<br />

its electricity generation with nuclear. With 182 reactors<br />

Europe remains the most important region using nuclear<br />

energy. With a share of about 27 % almost every fourth<br />

kilowatt-hour of electricity spent in European is generated<br />

in nuclear power plants.<br />

Regarding newly started projects in 2017, three projects<br />

were implemented: In Bangladesh the Rooppur project<br />

started; India started its third project at the Kudankulam<br />

site and in the Republic of Korea the project Shin-Kori-5<br />

was initiated. Thus globally 55 nuclear power plant units<br />

with a 59,872 MWe gross – and 56,642 MWe net capacity<br />

were under construction; due to commissioning two less<br />

than in the previous year. Furthermore around 125 new<br />

build projects were registered, which are currently in a<br />

specific planning stage. Besides many projects are planned<br />

in countries, which plan to enter the nuclear sector. For<br />

another 100 nuclear power plant units exist already<br />

preliminary plans.<br />

These nuclear figures reflect a rather unspectacular<br />

development of global nuclear energy with a constant or<br />

rather slight decreasing share. A glance at the details, both<br />

globally and from each single country show, that nuclear<br />

energy can definitely expand its important role in the global<br />

energy supply. On the one hand, this can be explained by<br />

the advised operations times of existing reactors. Today,<br />

60 years of operating time are technically and economically<br />

reality and 80 years are under preparation, safety-related<br />

feasible without any compromises and thus for many<br />

today’s older plants already in preparation or realisation<br />

phase. Thus, the nuclear “age pyramid” with many plants in<br />

the range of 25 to 40 operating years, will have a rather<br />

small influence during the next decades. The regulatory<br />

and political environment shows, that these strategies are<br />

accepted or even receive support through arguments such<br />

as conserving resources, climate protection, favourable<br />

and stable costs as well as supply reliability. The contribution<br />

of innovative technical developments such as Small<br />

Modular Reactors, which are currently being discussed and<br />

developed in many different ways, is not exactly foreseeable.<br />

But these developments show that the potential of<br />

nuclear energy technology is far from exhausted – here we<br />

are more at the beginning than at the end of the journey.<br />

Christopher Weßelmann<br />

– Editor in Chief –<br />

359<br />

EDITORIAL<br />

Editorial<br />

Figures, Facts, Assessments and Two Remarkable Conclusions


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

EDITORIAL 360<br />

Kernenergiebilanzen 2017 | <strong>2018</strong>:<br />

Zahlen, Fakten, Einschätzungen und zwei beachtenswerte Feststellungen<br />

Die Jahresmitte ist mit den vorliegenden Daten sicherlich ein geeigneter Zeitpunkt für ein Resümee und eine Einschätzung<br />

der Entwicklung der Kernenergie im Vorjahresverlauf. Doch vorab aus gegebenem Anlass zwei aktuelle und sicherlich<br />

beachtenswerte Feststellungen.<br />

• Mit der Inbetriebnahme des 1.086 MWe (brutto) Kernkraftwerksblocks<br />

Yangjiang 5 in China ist nicht nur das vierzigste<br />

Kernkraftwerk des Landes in Betrieb gegangen, die<br />

Gesamtzahl der in Betrieb befindlichen Kernkraftwerke<br />

weltweit hat damit auch einen weiteren historischen<br />

Höchststand erreicht. Nachdem im Jahresverlauf <strong>2018</strong> in<br />

Russland die Blöcke Leningrad 2-1 (1.199 MWe) und<br />

­Rostov 4 (1.<strong>07</strong>0 MWe) den Betrieb aufgenommen hatten,<br />

sind derzeit weltweit 451 Kernkraftwerke in Betrieb zu<br />

verzeichnen. Mit 421.553 MWe Bruttoleistung sowie<br />

398.094 MWe Nettoleistung steht weltweit auch so viel<br />

Kernenergiekapazität zur Verfügung wie nie zuvor.<br />

• Zudem steigt der Beitrag der Kernkraftwerke, je nach<br />

Struktur der Erzeugung in den einzelnen Ländern differenziert,<br />

in Bezug auf Versorgungssicherheit und Systemstabilität.<br />

Kernkraftwerke weisen heraus ragende Eigenschaften<br />

bei der Lastfolgefähigkeit auf. Mit hohen möglichen<br />

Laständerungsgeschwindig keiten sowie großen<br />

Leistungshüben, also der Differenz zwischen Minimal- und<br />

Maximalleistung, sind die Kernkraftwerke gemeinsam mit<br />

weiteren konventio nellen Kraftwerken nicht Notnagel oder<br />

Füller in Stromversorgungssystemen, sondern Grundlage<br />

für Netz stabilität und Integration der volatilen Einspeisung<br />

aus Erneuerbaren. Kernkraftwerke und konventionelle<br />

Erzeugung liefern dann Strom, wenn die Erneuerbaren<br />

nicht verfügbar sind und sie machen durch ihre Regelfähigkeit<br />

den Weg für erneuerbaren Strom dann frei, wenn<br />

dieser aufgrund der Launen der Natur einmal mit hoher<br />

Leistung verfügbar ist.<br />

Doch nun zurück zur Jahresbilanz: Mit 449 Kernkraft werken<br />

war Ende 2017 ein Block weniger in Betrieb als ein Jahr zuvor.<br />

Im Einzelnen sind vier Blöcke kritisch geworden und wurden<br />

erstmals mit dem Stromnetz synchronisiert: Fuqing 4 und<br />

Tianwan 3 in China, Chasnupp 4 in Pakistan und Rostov 4 in<br />

Russland. Fünf Kernkraftwerksblöcke stellten ihren Betrieb<br />

ein: In Deutschland gemäß der politischen Entscheidung aus<br />

dem Jahr 2011 nach 33 Jahren erfolgreichem Betrieb das<br />

Kernkraftwerk Gund remmingen B; in Japan der proto typische<br />

Schnelle Brutreaktor Monju; in der Republik Korea das erste<br />

Kernkraftwerk des Landes, Kori 1; in Schweden der Block<br />

Oskarshamn 1 und in Spanien hat der Betreiber des Kernkraftwerks<br />

Santa Maria de Garona nach fünf Jahren erfolgloser<br />

Beantragungsphase für eine Laufzeitverlängerung die endgültige<br />

Stilllegung beschlossen.<br />

Bei den Stromerzeugungskapazitäten lag die Brutto leistung<br />

der Kernenergie weltweit mit 420.383 MWe deutlich über<br />

der Marke von 400.000 MW und blieb aufgrund der hohen<br />

Leistung der Neuanlagen quasi auf Vorjahresniveau von<br />

420.534 MW. Die Nettoleistung erreichte 397.193 MWe und<br />

lag damit sogar höher als der Vorjahreswert von 397.003 MW.<br />

Ein erneut gutes Ergebnis kann die Kernenergie auch bei<br />

der Stromerzeugung verzeichnen. Mit einer Nettoerzeugung<br />

von 2.490 TWh lag diese rund 1,0 % höher als im Vorjahr mit<br />

2.477 TWh. Aufgrund von seit 2011 weiterhin nicht in Betrieb<br />

befindlichen 35 Kernkraftwerken in Japan ist diese aber noch<br />

niedriger als vor dem Erdbeben mit Tsunami und Unfall in<br />

Fukushima. Allerdings sind in Japan in 2017 mit Takahama 3<br />

und Takahama 4 weitere zwei Kernkraftwerke wieder in<br />

Betrieb gegangen. Somit sind seit 2011 insgesamt sieben<br />

Anlagen in Japan wieder in Betrieb genommen worden.<br />

Der Anteil an der gesamten weltweiten Strompro duktion lag<br />

weiterhin bei 11 %; der Anteil der Kernenergie an der gesamten<br />

weltweiten Energieversorgung bei rund 4,5 % – dies sind zwei<br />

sicherlich weitere bemerkenswerte Zahlen: Die rund 414<br />

derzeit aktiven Kernkraftwerke sind in der Lage, jeden zehnten<br />

Menschen weltweit mit Strom zu versorgen oder jeder zwanzigste<br />

Mensch weltweit deckt seinen Energiebedarf komplett<br />

mit Kernenergie. Regional und in den einzelnen Kernenergie<br />

nutzenden Ländern liegt der Anteil der Kern energie an der<br />

Stromerzeugung in einer Spannbreite von inzwischen 4 % in<br />

China – eine Verdoppelung innerhalb von 5 Jahren – bis fast<br />

72 % in Frankreich. 13 Staaten decken mehr als 30 % ihrer<br />

Stromerzeugung nuklear. Europa ist weiterhin mit 182 Reaktoren<br />

die bedeutendste Kernenergie nutzende Region. In ihr<br />

wird mit einem Anteil von rund 27 % rund jede vierte<br />

verbrauchte Kilowattstunde Strom in Kernkraftwerken erzeugt.<br />

Bei den neu begonnenen Projekten sind für das Jahr 2017<br />

drei Vorhaben zu verzeichnen: Im Newcomer-Land Bangladesh<br />

wurde gemeinsam mit dem russischen Partner mit dem Bau des<br />

ersten Blocks am Standort Rooppur begonnen, Indien hat die<br />

Errichtung des dritten Blocks in Kudankulam in Angriff<br />

enommen und in der Republik Korea startete das Projekt<br />

Shin-Kori 5. Damit waren weltweit 55 Kernkraftwerksblöcke<br />

mit 59.872 MWe Brutto- und 56.642 MWe Nettoleistung in<br />

Bau; aufgrund der Neuinbetriebnahmen zwei weniger als ein<br />

Jahr zuvor. Darüber hinaus sind rund 125 Neubauprojekte zu<br />

ver zeichnen, die sich im konkreten Planungsstadium befinden.<br />

Viele dieser Projekte werden zudem in Ländern geplant, die<br />

neu in die Kernenergie einsteigen wollen. Für weitere 100 Kernkraftwerksblöcke<br />

bestehen Vorplanungen.<br />

Diese Kernenergiezahlen spiegeln eine im Wesent lichen<br />

unspektakuläre weitere absehbare Entwicklung für die Kernenergie<br />

weltweit wider, mit eher geringfügigen Verän derungen.<br />

Ein Blick auf die Details, sowohl global als auch der einzelnen<br />

Länder, zeigt, dass Kernenergie durchaus zukünftig ihre<br />

wichtige und steigende Rolle bei der weltweiten Energieversorgung<br />

ausbauen kann: Zu begründen ist dies einerseits<br />

sicherlich mit den avisierten Laufzeiten von bestehenden<br />

Reaktoren. Heute sind 60 Jahre Laufzeit für die Anlagen<br />

technisch- wirtschaftlich Realität und 80 Jahre in der Vorbereitung,<br />

sicherheitstechnisch ohne Abstriche umsetzbar und<br />

damit für viele heute ältere Anlagen in der Vorbereitungs- bzw.<br />

Umsetzungs phase. Die kerntechnische „Alterspyramide“, mit<br />

vielen Anlagen im Bereich von 25 bis 40 Betriebsjahren wird<br />

daher in den nächsten Jahrzehnten kaum einen Einfluss haben.<br />

Auch zeigt sich im regula torischen und politischen Umfeld,<br />

dass diese Strategie akzeptiert oder gar mit Argumenten wie<br />

Ressourcen schonung, Klimaschutz, günstige und stabile Kosten<br />

sowie Versorgungssicherheit und Netzstabilität beim Umbau<br />

des Stromversorgungs systems mit mehr volatilen Quellen<br />

Unterstützung erfährt. Welchen Beitrag innovative, tech nische<br />

Entwicklungen, wie unter anderem die derzeit in vielfältiger<br />

Weise diskutierten und in Entwicklung befind lichen Kleinen-<br />

Modularen Reaktoren (Small Modular Reactors) liefern<br />

können, ist nicht konkret absehbar, zeigt aber, dass das Entwicklungspotenzial<br />

der Kernenergie technik bei Weitem nicht<br />

ausgeschöpft ist – hier befinden wir uns eher am Beginn, als am<br />

Ende der Reise.<br />

Christopher Weßelmann<br />

– Chefredakteur –<br />

Editorial<br />

Summary: Nuclear Power 2017/<strong>2018</strong>: Figures, Facts, Assessments and Two Remarkable Conclusions


Kommunikation und<br />

Training für Kerntechnik<br />

Suchen Sie die passende Weiter bildungs maßnahme im Bereich Kerntechnik?<br />

Wählen Sie aus folgenden Themen: Dozent/in Termin/e Ort<br />

3 Atom-, Vertrags- und Exportrecht<br />

Ihr Weg durch Genehmigungs- und Aufsichtsverfahren RA Dr. Christian Raetzke 18.09.<strong>2018</strong><br />

02.04.2019<br />

22.10.2019<br />

Das Recht der radioaktiven Abfälle RA Dr. Christian Raetzke 23.10.<strong>2018</strong><br />

05.03.2019<br />

17.09.2019<br />

Atomrecht – Navigation im internationalen nuklearen Vertragsrecht Akos Frank LL. M. 03.04.2019 Berlin<br />

Atomrecht – Was Sie wissen müssen<br />

Export kerntechnischer Produkte und Dienstleistungen –<br />

Chancen und Regularien<br />

3 Kommunikation und Politik<br />

RA Dr. Christian Raetzke<br />

Akos Frank LL. M.<br />

RA Kay Höft M. A.<br />

RA Olaf Kreuzer<br />

Dr. Ing. Wolfgang Steinwarz<br />

Berlin<br />

Berlin<br />

04.06.2019 Berlin<br />

12.06. - 13.06.2019 Berlin<br />

Schlüsselfaktor Interkulturelle Kompetenz –<br />

International verstehen und verstanden werden<br />

Public Hearing Workshop –<br />

Öffentliche Anhörungen erfolgreich meistern<br />

Kerntechnik und Energiepolitik im gesellschaftlichen Diskurs<br />

– Themen und Formate<br />

Angela Lloyd 26.09.<strong>2018</strong> Berlin<br />

Dr. Nikolai A. Behr 16.10. - 17.10.<strong>2018</strong><br />

05.11. - 06.11.2019<br />

Berlin<br />

N.N. 12.11. - 13.11.<strong>2018</strong> Gronau/<br />

Lingen<br />

3 Rückbau und Strahlenschutz<br />

In Kooperation mit dem TÜV SÜD Energietechnik GmbH Baden-Württemberg:<br />

Stilllegung und Rückbau in Recht und Praxis<br />

Das neue Strahlenschutzgesetz –<br />

Folgen für Recht und Praxis<br />

Dr. Matthias Bauerfeind<br />

RA Dr. Christian Raetzke<br />

Maria Poetsch<br />

RA Dr. Christian Raetzke<br />

24.09. - 25.09.<strong>2018</strong> Berlin<br />

05.11. - 06.11.<strong>2018</strong><br />

12.02. - 13.02.2019<br />

25.06. - 26.06.2019<br />

Berlin<br />

3 Nuclear English<br />

Enhancing Your Nuclear English Devika Kataja 22.05. - 23.05.2019 Berlin<br />

Advancing Your Nuclear English (Aufbaukurs) Devika Kataja 10.10. - 11.10.<strong>2018</strong><br />

10.04. - 11.04.2019<br />

18.09. - 19.09.2019<br />

3 Wissenstransfer und Veränderungsmanagement<br />

Berlin<br />

Veränderungsprozesse gestalten – Heraus forderungen<br />

meistern, Beteiligte gewinnen<br />

Erfolgreicher Wissenstransfer in der Kern technik –<br />

Methoden und praktische Anwendung<br />

Dr. Tanja-Vera Herking<br />

Dr. Christien Zedler<br />

Dr. Tanja-Vera Herking<br />

Dr. Christien Zedler<br />

28.11. - 29.11.<strong>2018</strong><br />

26.11. - 27.11.2019<br />

Berlin<br />

26.03. - 27.03.2019 Berlin<br />

Haben wir Ihr Interesse geweckt? 3 Rufen Sie uns an: +49 30 498555-30<br />

Kontakt<br />

INFORUM Verlags- und Verwaltungs gesellschaft mbH ı Robert-Koch-Platz 4 ı 10115 Berlin<br />

Petra Dinter-Tumtzak ı Fon +49 30 498555-30 ı Fax +49 30 498555-18 ı seminare@kernenergie.de<br />

Die INFORUM-Seminare können je nach<br />

Inhalt ggf. als Beitrag zur Aktualisierung<br />

der Fachkunde geeignet sein.


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

362<br />

Issue 6/7<br />

June/July<br />

CONTENTS<br />

369<br />

AMNT <strong>2018</strong>:<br />

Opening Address<br />

| | View of TU Munich´s research site in Garching with the FRM I in the foreground and the Forschungs-Neutronenquelle<br />

Heinz Maier-Leibnitz (FRM II) in the background. The 20 MWth research neutron source FRM II is in operation, the FRM I<br />

under decommissioning after 43 years of successful operation for various research projects (Courtesy: TUM)<br />

Editorial<br />

Summary: Nuclear Power 2017 | <strong>2018</strong> . . . . . . . . 359<br />

Kernenergiebilanzen 2017 | <strong>2018</strong> . . . . . . . . . . 360<br />

Abstracts | English . . . . . . . . . . . . . . . . . . . 364<br />

Abstracts | German . . . . . . . . . . . . . . . . . . . 365<br />

Inside Nuclear with NucNet<br />

Poland Faces Delays and Decisions<br />

as It Makes Ambitious Plans to To Nuclear . . . . . 366<br />

AMNT <strong>2018</strong><br />

49 th Annual Meeting on Nuclear Technology<br />

(AMNT <strong>2018</strong>): Opening Address . . . . . . . . . . . 369<br />

Ralf Güldner<br />

374<br />

| | Crystallographic length change of UO 2 /PuO 2 -fuel relative to<br />

displacement per atom (dpa).<br />

Best Paper<br />

TESPA-ROD Code Prediction of the Fuel Rod<br />

Behaviour During Long-term Storage . . . . . . . . 374<br />

Heinz G. Sonnenburg<br />

DAtF Notes. . . . . . . . . . . . . . . . . . . . . .377<br />

369<br />

| | AMNT <strong>2018</strong>, Opening speech, Dr. Ralf Güldner, President, DAtF.<br />

Spotlight on Nuclear Law<br />

New Build Projects Abroad – A Challenge<br />

for Regulation . . . . . . . . . . . . . . . . . . . . . . 378<br />

Neubauprojekte im Ausland – eine<br />

Herausforderung für die Regulierung. . . . . . . . 378<br />

Christian Raetzke<br />

Contents


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

Research and Innovation<br />

Safety Assessment of the Research Reactors<br />

FRM II and FR MZ After the Fukushima Event . . . 379<br />

Axel Pichlmaier, Heiko Gerstenberg, Anton Kastenmüller, Christian<br />

Krokowski, Ulrich Lichnovsky, Roland Schätzlein, Michael Schmidt,<br />

Christopher Geppert, Klaus Eberhardt and Sergei Karpuk<br />

|379<br />

383<br />

| | Overall view of the FRM II (foreground), the neutron guide hall (middle)<br />

and the FRM I (”atomic egg”, now under decommissioning).<br />

Decommissioning of Germany’s<br />

First Nuclear Reactor . . . . . . . . . . . . . . . . . . 383<br />

Ulrich Lichnovsky, Julia Rehberger, Axel Pichlmaier and<br />

Anton Kastenmüller<br />

| Visualisation of the unfiltered ventilations system.<br />

|392<br />

404<br />

| | Pyramide.<br />

Operation and New Build<br />

Further Development of<br />

a Thermal- Hydraulics Two-Phase Flow Tool . . . . 401<br />

Verónica Jáuregui Chávez, Uwe Imke, Javier Jiménez and V.H.<br />

Sánchez-Espinoza<br />

Decommissioning and Waste Management<br />

Special Features of Measurement<br />

for the Radiological Characterization<br />

of High-level Radioactive Waste . . . . . . . . . . . 404<br />

Besonderheiten bei Messungen<br />

zur radiologischen Charakterisierung<br />

hochradioaktiver Abfälle . . . . . . . . . . . . . . . . 404<br />

Marina Sokcic-Kostic and Roland Schultheis<br />

| Zelle für den fernhantierten Umgang mit radioaktiven Stoffen.<br />

363<br />

CONTENTS<br />

Energy Policy, Economy and Law<br />

While You Were Sleeping:<br />

The Unnoticed Loss of Carbon-free Generation<br />

in the United States . . . . . . . . . . . . . . . . . . . 389<br />

KTG Inside . . . . . . . . . . . . . . . . . . . . . . 408<br />

News . . . . . . . . . . . . . . . . . . . . . . . . . 410<br />

Chris Vlahoplus, Ed Baker, Sean Lawrie, Paul Quinlan and<br />

Benjamin Lozier<br />

German Secretarial Management ISO/TC 85/SC 6<br />

Reactor Technology . . . . . . . . . . . . . . . . . . . 392<br />

Deutsche Sekretariatsführung ISO/TC 85/SC 6<br />

Reactor-Technology . . . . . . . . . . . . . . . . . . . 392<br />

Janine Winkler and Michael Petri<br />

Nuclear Today<br />

Confidence in Nuclear Safeguards at Risk<br />

as Trump Quits One Deal to Pursue Another. . . . 422<br />

John Shepherd<br />

Imprint . . . . . . . . . . . . . . . . . . . . . . . . . . . 388<br />

Environment and Safety<br />

Thermal Hydraulic Analysis of the<br />

Convective Heat Transfer of an Air-cooled<br />

BWR Spent Fuel Assembly . . . . . . . . . . . . . . . 397<br />

AMNT 2019: Call for Papers . . . . . . . . . . . . . Insert<br />

Christine Partmann, Christoph Schuster and Antonio Hurtado<br />

Contents


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

364<br />

ABSTRACTS | ENGLISH<br />

Poland Faces Delays and Decisions as It<br />

Makes Ambitious Plans to Go Nuclear<br />

NucNet | Page 366<br />

Poland has drawn up ambitious plans to build up to<br />

6,000 MW of nuclear generating capacity, potentially<br />

at two sites, by the late 2030s or early 2040s.<br />

But the government is yet to take a final decision<br />

and the deadline has pushed back several times,<br />

with plans hampered by changes in government,<br />

problems putting in place the right domestic legislation<br />

and the need to find the right financing model.<br />

Poland needs nuclear because of its low carbon<br />

footprint and as a way to decrease the country’s<br />

carbon emissions. Poland is no newcomer to nuclear<br />

technology. The Polish National Centre for Nuclear<br />

Research (NCBJ) has operated a research reactor at<br />

Swierk. In 1971 the government made its first<br />

binding decision to build a nuclear plant. The<br />

project was formally scrapped in 1990.<br />

49 th Annual Meeting on Nuclear Technology<br />

(AMNT <strong>2018</strong>): Opening Address<br />

Ralf Güldner | Page 369<br />

As in other years, DAtF and the German Nuclear<br />

Society (KTG), offer a comprehensive program<br />

with their 49 th Annual Meeting on Nuclear Technology,<br />

giving insights into many aspects of nuclear<br />

technology and contributing to the international<br />

exchange of knowledge and experience in industry,<br />

research, politics and administration. In keeping<br />

with long-standing tradition, even in the year<br />

preceding its 50th anniversary, on 7 and 8 May 2019<br />

in Berlin, the AMNT remains the only conference<br />

in Germany, and one of the few in Europe, that<br />

combines all the issues surrounding nuclear<br />

technology under one roof and is dedicated to every<br />

sector of the industry.<br />

TESPA-ROD Code Prediction of the Fuel Rod<br />

Behaviour During Long-term Storage<br />

Heinz G. Sonnenburg | Page 374<br />

The fuel rod code TESPA-ROD is applicable to LOCA<br />

transients and RIA transients. Recently, code<br />

models have been implemented in order to predict<br />

the transitional fuel rod behaviour during longterm<br />

storage. In particular modelling for both<br />

long-term fuel swelling and associated helium gas<br />

release have been implemented. First TESPA-ROD<br />

code predictions for the long-term transient,<br />

including wet storage, drying procedure and dry<br />

storage indicate gap closure between fuel and<br />

cladding. Thus, stress level in the cladding may<br />

depend on both the internal fission gas pressure and<br />

the fuel/cladding mechanical interaction.<br />

New Build Projects Abroad – A Challenge<br />

for Regulation<br />

Christian Raetzke | Page 378<br />

Numerous reactors are under construction or in the<br />

planning stage worldwide. However, compared to<br />

the situation a few decades ago, when the majority<br />

of the plants in operation today were built,<br />

the project models and boundary conditions are<br />

much more diverse, so that traditional models of<br />

regulation, approval and supervision (regulation)<br />

sometimes reach their limits. The article provides<br />

examples of new challenges. Regulation must find<br />

new answers to the challenges. However, it must<br />

not ignore the proven principles and instruments in<br />

order to ensure nuclear safety.<br />

Safety Assessment of the Research Reactors<br />

FRM II And FR MZ After the Fukushima<br />

Event<br />

Axel Pichlmaier, Heiko Gerstenberg, Anton<br />

Kastenmüller, Christian Krokowski, Ulrich Lichnovsky,<br />

Roland Schätzlein, Michael Schmidt,<br />

Christopher Geppert, Klaus Eberhardt<br />

and Sergei Karpuk | Page 379<br />

After the events at the Fukushima-I nuclear power<br />

plant (NPP) in 2011 the Reaktorsicherheitskommission<br />

(RSK) has carried out an overall assessment<br />

of the German nuclear fleet with respect to extreme<br />

(beyond design base) events. This paper deals only<br />

with the research reactors (RR) FRM II (Garching)<br />

and FR MZ (Mainz). The findings of the RSK, its<br />

recommendations and their status of implementation<br />

will be presented.<br />

Decommissioning of Germany’s First<br />

Nuclear Reactor<br />

Ulrich Lichnovsky, Julia Rehberger,<br />

Axel Pichlmaier and Anton Kastenmüller | Page 383<br />

FRM started operating in 1957 as the first nuclear<br />

reactor in Germany. Reactor operation ended in<br />

2000. Licensing procedures for the deconstruction<br />

and dismantling of the reactor started in 1998. In<br />

2014 the Technical University of Munich (TUM) was<br />

granted the license to decommission the reactor.<br />

The article describes the (long) way to the license<br />

for dismantling of the reactor and gives a short overview<br />

of the current state of the decommissioning<br />

project. Results of the (pre-)licensing stage are<br />

presented: disposal of spent nuclear fuel (SNF) and<br />

preparation of the safety report containing details<br />

on fire protection, radiological characterization<br />

(neutron activation and contamination), waste<br />

management and safety analysis. With regard to<br />

the current state of the project we will discuss:<br />

clearance of material and current obstacles.<br />

While You were Sleeping:<br />

The Unnoticed Loss of Carbon-free<br />

Generation in the United States<br />

Chris Vlahoplus, Ed Baker, Sean Lawrie,<br />

Paul Quinlan and Benjamin Lozier | Page 389<br />

The United States has embarked on actions to<br />

combat climate change by putting a focus on<br />

lowering the carbon emissions from the electric<br />

generation sector. A pillar of this approach is to<br />

promote the greater use of renewable resources,<br />

such as wind and solar. The past decade has seen<br />

significant growth in carbon-free energy from wind<br />

and solar. Generation from these resources reached<br />

333,000 GWh in 2017. However, unbeknownst to<br />

many who care about climate change, most of the<br />

progress made to date through renewables is at<br />

significant risk due to the loss or potential loss of<br />

more than 228,000 GWh of nuclear carbon-free<br />

generation.<br />

German Secretarial Management ISO/TC<br />

85/SC 6 Reactor Technology<br />

Janine Winkler and Michael Petri | Page 392<br />

On behalf of the Federal Ministry for the Environment,<br />

Nature Conservation and Nuclear Safety<br />

(BMU) and represented by the Office of the Nuclear<br />

Safety Standards Commission (KTA), DIN has taken<br />

over the Secretariat of ISO/TC 85/SC 6 Reactor<br />

technology in conjunction with China in <strong>2018</strong>. The<br />

new role provides an opportunity to increase<br />

German participation and influence in the field<br />

of International Standardization, for instance<br />

via conversion of German Industrial and KTA<br />

Standards into International Standards. This<br />

demonstrates that Germany is willing to actively<br />

participate in the ongoing efforts to increase<br />

Nuclear Safety in the peaceful use of Nuclear<br />

Energy.<br />

Thermal Hydraulic Analysis<br />

of the Convective Heat Transfer of an<br />

Air-cooled BWR Spent Fuel Assembly<br />

Christine Partmann, Christoph Schuster<br />

and Antonio Hurtado | Page 397<br />

Since the reactor accident in Fukushima Daiichi,<br />

the vulnerability of spent fuel pools (SFP) is more<br />

focused in nuclear safety research. This paper<br />

presents the experimental findings about the<br />

convective heat transfer of a boiling water reactor<br />

(BWR) spent FA under the absence of water. These<br />

studies are performed within the joint project<br />

SINABEL that is funded by the German Federal<br />

Ministry of Education and Research to investigate<br />

the thermal hydraulics of selected accident<br />

scenarios in SFP experimentally and numerically.<br />

Further Development of a Thermal-<br />

Hydraulics Two-Phase Flow Tool<br />

Verónica Jáuregui Chávez, Uwe Imke,<br />

Javier Jiménez and V.H. Sánchez-Espinoza | Page 401<br />

The numerical simulation tool TWOPORFLOW is<br />

under development at the Institute for Neutron<br />

Physics and Reactor Technology (INR) of the<br />

Karlsruhe Institute of Technology (KIT). TWOPOR-<br />

FLOW is a thermal-hydraulics code that is able to<br />

simulate single- and two-phase flow in a structured<br />

or unstructured porous medium using a flexible 3-D<br />

Cartesian geometry. The main purpose of this work<br />

is the extension, improvement and validation of<br />

TWOPORFLOW in order to simulate the thermalhydraulic<br />

behavior of Boiling Water Reactor (BWR)<br />

cores.<br />

Special Features of Measurement<br />

for the Radiological Characterization<br />

of High-level Radioactive Waste<br />

Marina Sokcic-Kostic and<br />

Roland Schultheis | Page 404<br />

In nuclear power plants occasionally highly radioactive<br />

waste is produced, such as fragments of<br />

defective fuel elements or filters from hot cells.<br />

NUKEM Technologies Engineering Services has<br />

designed and implemented waste treatment options<br />

for such waste in projects that characterise highlevel<br />

radioactive waste and condition it in accordance<br />

with the requirements for long-term storage.<br />

This also includes a volume reduction to minimize<br />

future storage costs. The focus of this article is on<br />

the measurement of highly active waste and its<br />

implications.<br />

Confidence in Nuclear Safeguards at Risk as<br />

Trump Quits One Deal to Pursue Another<br />

John Shepherd | Page 422<br />

Confidence in nuclear safeguards at risk as Trump<br />

quits one deal to pursue another. By the time you sit<br />

down to read this article, Donald Trump and Kim<br />

Jong Un may have had an historic sit-down of their<br />

own – in fact the first meeting between a sitting US<br />

president and a leader of North Korea.<br />

Abstracts | English


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

Polen steht mit seinen ehrgeizigen Plänen<br />

zur Nutzung der Kernenergie vor<br />

Verzögerungen und Entscheidungen<br />

NucNet | Seite 366<br />

Polen hat ehrgeizige Pläne formuliert, bis Ende<br />

der 2030er oder Anfang der 2040er Jahre bis zu<br />

6.000 MW Kernenergiekapazität an zwei Standorten<br />

zu errichten. Dazu muss die Regierung eine<br />

endgültige Entscheidung treffen, die mehrmals<br />

verschoben wurde, wobei der Zeitplan durch<br />

Regierungswechsel, Probleme bei der Umsetzung<br />

der nationalen Gesetzgebung und der Notwendigkeit,<br />

das geeignete Finanzierungsmodell zu finden,<br />

behindert wurden. Polen benötigt Kernenergie<br />

unter andrem wegen seiner günstigen CO 2 -Bilanz.<br />

Polen ist kein Newcomer in der Nukleartechnik. Das<br />

Polnische Nationale Zentrum für Kernforschung<br />

(NCBJ) betreibt seit 1972 einen Forschungsreaktor<br />

in Swierk. 1971 traf die Regierung ihren ersten<br />

Beschluss zum Bau eines Kernkraftwerks. Das<br />

Projekt wurde 1990 formell eingestellt.<br />

49. Jahrestagung Kerntechnik (AMNT <strong>2018</strong>):<br />

Eröffnungsansprache<br />

Ralf Güldner | Seite 369<br />

Wie in den vergangenen Jahren bieten DAtF und<br />

KTG mit der 49. Jahrestagung Kerntechnik ein<br />

umfangreiches Programm, das Einblicke in viele<br />

Aspekte der Kerntechnik gibt und zum internationalen<br />

Wissens- und Erfahrungsaustausch in<br />

Industrie, Forschung, Politik und Verwaltung<br />

beiträgt. Auch im Jahr vor ihrem 50-jährigen<br />

Jubiläum, am 7. und 8. Mai 2019 in Berlin, ist das<br />

AMNT die einzige Konferenz in Deutschland und<br />

eine der wenigen in Europa, die alle Themen rund<br />

um die Kerntechnik unter einem Dach vereint und<br />

sich allen Bereichen der Branche widmet.<br />

TESPA-ROD Codeberechnungen zum Brennelementverhalten<br />

bei Langzeitlagerung<br />

Heinz G. Sonnenburg | Seite 374<br />

Das Brennstab-Rechenprogramm TESPA-ROD<br />

berechnet für Kühlmittelverluststörfälle als auch<br />

für Reaktivitätsstörfälle das transiente Brenn stab-<br />

Verhalten. Dieses Programm wurde jetzt erweitert,<br />

um auch das Verhalten während der Langzeitlagerung<br />

berechnen zu können. Insbesondere<br />

wurden Modelle für das Langzeit-Brennstoffschwellen<br />

und der damit verbundenen Helium-Freisetzung<br />

implementiert. Erste TESPA-ROD Analysen<br />

zeigen, dass für Langzeittransienten, die die Nasslagerung,<br />

den Trocknungsprozess und die Trockenlagerung<br />

umfassen, ein Spaltschluss zwischen<br />

Brennstoff und Brennstabhülle möglich ist. Somit<br />

kann die Hüllrohrspannung vom Spaltgasinnendruck<br />

als auch von der mechanischen Interaktion<br />

zwischen Hülle und Brennstoff bestimmt werden.<br />

Neubauprojekte im Ausland – eine<br />

Herausforderung für die Regulierung<br />

Christian Raetzke | Seite 378<br />

Weltweit sind zahlreiche Reaktoren in Bau oder in<br />

konkreter Planung. Im Vergleich zur Situation vor<br />

einigen Jahrzehnten, als das Gros der heute betriebenen<br />

Anlagen errichtet wurde, sind die Projekt modelle<br />

und Randbedingungen jedoch deutlich vielfältiger, so<br />

dass überlieferte Modelle der Regelsetzung, Genehmigung<br />

und Aufsicht ( Regulierung) zum Teil an ihre<br />

Grenzen stoßen. Der Artikel liefert Beispiele für neue<br />

Herausfor derungen. Auf die Herausforderungen<br />

muss die Regulierung neue Antworten finden. Sie<br />

darf allerdings dabei auch die bewährten Grundsätze<br />

und Instrumente nicht außer Acht lassen, damit die<br />

nukleare Sicherheit gewährleistet bleibt.<br />

Sicherheitsbewertung der Forschungsreaktoren<br />

FRM II und FR MZ nach dem<br />

Fukushima-Ereignis<br />

Axel Pichlmaier, Heiko Gerstenberg,<br />

Anton Kastenmüller, Christian Krokowski,<br />

Ulrich Lichnovsky, Roland Schätzlein,<br />

Michael Schmidt, Christopher Geppert,<br />

Klaus Eberhardt und Sergei Karpuk | Seite 379<br />

Nach den Ereignissen im Kernkraftwerk Fukushima-I<br />

im Jahr 2011 hat die Reaktor-Sicherheitskommission<br />

(RSK) eine Gesamtbewertung der<br />

deutschen Reaktoren im Hinblick auf extreme (über<br />

die Auslegung hinausgehende) Ereignisse durchgeführt.<br />

Diese Arbeit beschäftigt sich ausschließlich<br />

mit den Forschungsreaktoren (RR) FRM II<br />

( Garching) und FR MZ (Mainz). Die Ergebnisse der<br />

RSK, ihre Empfehlungen und ihr Umsetzungsstand<br />

werden vorgestellt.<br />

Stilllegung des ersten Kernreaktors<br />

Deutschlands<br />

Ulrich Lichnovsky, Julia Rehberger,<br />

Axel Pichlmaier und Anton Kastenmüller | Seite 383<br />

Der FRM wurde 1957 als erster Kernreaktor in<br />

Deutschland in Betrieb genommen. Der Reaktorbetrieb<br />

wurde im Jahr 2000 eingestellt. Die Genehmigungsverfahren<br />

für Stilllegung und Rückbau des<br />

Reaktors begannen 1998. Im Jahr 2014 erhielt die<br />

Technische Universität München (TUM) die Genehmigung<br />

zur Stilllegung des Reaktors. Der Beitrag<br />

beschreibt den (langen) Weg zur Genehmigung für<br />

den Rückbau des Reaktors und gibt einen kurzen<br />

Überblick über den aktuellen Stand des Stilllegungsprojekts.<br />

Ergebnisse der (Vor-)Genehmigungsphase<br />

werden vorgestellt: Entsorgung abgebrannter<br />

Brennelemente und Erstellung des Sicherheitsberichts<br />

mit Angaben zum Brandschutz, zur<br />

radiologischen Charakterisierung (Neutronenaktivierung<br />

und -kontamination), zur Abfallwirtschaft<br />

und zur Sicherheitsanalyse. Im Hinblick<br />

auf den aktuellen Stand des Projektes werden<br />

diskutiert: Räumung von Material und aktuellen<br />

Herausforderungen.<br />

Ganz im Stillen: Der unbemerkte Verlust der<br />

CO 2 -freien Stromerzeugung in den USA<br />

Chris Vlahoplus, Ed Baker, Sean Lawrie,<br />

Paul Quinlan und Benjamin Lozier | Page 389<br />

Die Vereinigten Staaten von Amerika haben<br />

Maßnahmen für den Klimaschutz eingeleitet. Ein<br />

Schwerpunkt liegt auf der Minderung von<br />

CO 2 -Emissionen bei der Stromerzeugung. Eine<br />

Säule dieses Ansatzes ist die Förderung der verstärkten<br />

Nutzung erneuerbarer Energien, wie Wind<br />

und Sonne. In den letzten zehn Jahren hat die CO 2 -<br />

freie Erzeugung aus Wind und Sonne auch in den<br />

USA stark zugenommen. Die Erzeugung aus diesen<br />

Ressourcen erreichte im Jahr 2017 333.000 GWh.<br />

Für viele, die sich für das Thema Klimaschutz<br />

interessieren, ist jedoch unbekannt, dass in Summe<br />

die Fortschritte jedoch durch den Verlust oder<br />

potenziellen Verlust von mehr als 228.000 GWh<br />

kohlenstofffreier Stromerzeugung durch Kernenergie<br />

quasi zunichte gemacht werden.<br />

Deutsche Sekretariatsführung ISO/TC 85/SC<br />

6 Reactor technology<br />

Janine Winkler und Michael Petri | Seite 392<br />

Im Auftrag des Bundesministeriums für Umwelt,<br />

Naturschutz und nukleare Sicherheit (BMU), vertreten<br />

durch die KTA-Geschäftsstelle, hat DIN ab<br />

<strong>2018</strong> die Sekretariatsführung des ISO/TC 85/SC 6<br />

Reactor technology zusammen mit China übernommen.<br />

Ziel ist hierbei, den deutschen Einfluss in<br />

der internationalen Normung zu erhöhen und die<br />

Möglichkeit wahrzunehmen, deutsche Normen und<br />

KTA-Regeln in die internationalen Normen zu überführen.<br />

Damit möchte Deutschland international<br />

seinen Beitrag für die nukleare Sicherheit bei der<br />

friedlichen Nutzung der Kernenergie leisten.<br />

Thermohydraulische Analyse des<br />

konvektiven Wärmeübergangs eines<br />

luftgekühlten SWR-Brennelementes<br />

Christine Partmann, Christoph Schuster<br />

und Antonio Hurtado | Seite 397<br />

Seit dem Reaktorunfall in Fukushima Daiichi ist die<br />

Forschung zur Sicherheit abgebrannter Brennelemente<br />

stärker ausgeprägt. Dieser Beitrag stellt<br />

die experimentellen Ergebnisse zur konvektiven<br />

Wärme übertragung eines Siedewasserreaktor-<br />

Brennelements unter Abwesenheit von Wasser vor.<br />

Diese Untersuchungen werden im Rahmen des vom<br />

Bundesministerium für Bildung und Forschung<br />

geförderten Verbundprojektes SINABEL durchgeführt,<br />

um die thermische Hydraulik ausgewählter<br />

Unfallszenarien im Brennelementlagerbecken<br />

experimentell und numerisch zu untersuchen.<br />

Weiterentwicklung eines thermohydraulischen<br />

Zwei-Phasen-Strömungsmodells<br />

Verónica Jáuregui Chávez, Uwe Imke,<br />

Javier Jiménez und V.H. Sánchez-Espinoza | Seite 401<br />

Das numerische Simulationstool TWOPORFLOW<br />

wird am Institut für Neutronenphysik und Reaktortechnik<br />

(INR) des Karlsruher Instituts für Technologie<br />

(KIT) entwickelt. TWOPORFLOW ist ein thermohydraulischer<br />

Code, der in der Lage ist, ein- und<br />

zweiphasige Strömungen in einem strukturierten<br />

oder unstrukturierten porösen Medium unter Verwendung<br />

einer flexiblen 3-D kartesischen Geometrie<br />

zu simulieren. Das Hauptziel dieser Arbeit ist die Erweiterung,<br />

Verbesserung und Validierung von TWO-<br />

PORFLOW, um das thermisch- hydraulische Verhalten<br />

in Siedewasserreaktor kernen zu simulieren.<br />

Besonderheiten bei Messungen<br />

zur radiologischen Charakterisierung<br />

hochradioaktiver Abfälle<br />

Marina Sokcic-Kostic und<br />

Roland Schultheis | Seite 404<br />

Beim Betrieb von Kernkraftwerken fallen gelegentlich<br />

hochradioaktive Abfälle an, wie zum Beispiel<br />

Bruchstücke defekter Brennelemente oder Filter<br />

von heißen Zellen. Für solche Abfälle hat die<br />

NUKEM Technologies Engineering Services Abfallbehandlungsmöglichkeiten<br />

konzipiert und in<br />

Projekten umgesetzt, die hochradioaktive Abfälle<br />

charakterisieren und entsprechend den Anforderungen<br />

für die Langzeitlagerung konditionieren.<br />

Dies schließt auch eine Volumenverminderung ein,<br />

um so die künftigen Lagerkosten zu minimieren.<br />

Der Schwerpunkt dieses Artikels liegt in der<br />

Messung von hochaktivem Abfall und seinen<br />

Implikationen.<br />

Trump gefährdet das Vertrauen<br />

in Safeguards mit der Aufgabe eines<br />

Abkommens zugunsten anderer Ziele<br />

John Shepherd | Seite 422<br />

Das Vertrauen in das Safeguards-System gerät in<br />

Gefahr, da der U.S.-amerikanische Präsident Trump<br />

ein Abkommen aufgibt – mit dem Iran –, um ein<br />

anderes zu verfolgen. Bis zur Veröffentlichung<br />

dieses Beitrags hatten Donald Trump und Kim Jong<br />

Un vielleicht ein historisches Treffen – das erste<br />

Treffen zwischen einem amtierenden US-Präsidenten<br />

und einem Führer Nordkoreas.<br />

365<br />

ABSTRACTS | GERMAN<br />

Abstracts | German


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

366<br />

INSIDE NUCLEAR WITH NUCNET<br />

Poland Faces Delays and Decisions as It<br />

Makes Ambitious Plans to Go Nuclear<br />

Poland has drawn up ambitious plans to build up to 6 GW of nuclear generating capacity, potentially at<br />

two sites, by the late 2030s or early 2040s. But the government is yet to take a final decision and the deadline<br />

has pushed back several times, with plans hampered by changes in government, problems putting in place<br />

the right domestic legislation and the need to find the right financing model.<br />

Poland is no newcomer to nuclear technology.<br />

The Polish National Centre for Nuclear Research (NCBJ) has<br />

operated a research reactor at Swierk, on the outskirts of<br />

the capital Warsaw, since the mid-1970s. According to the<br />

International Atomic Energy Agency (IAEA), the first plans<br />

to launch nuclear power were drawn up in 1956. Nuclear<br />

energy was seen as a tool that would enable reductions in<br />

internal coal consumption, on which the whole Polish<br />

energy sector was based. With nuclear, it would have been<br />

possible to save precious natural resources or to export<br />

them.<br />

In 1971 the government made its first binding decision<br />

to build a nuclear plant. A year later it designated<br />

Zarnowiec, close to Poland’s Baltic coast in the northern<br />

province of Pomerania, as the site. After a decade of planning,<br />

construction of the four-unit Zarnowiec station began<br />

in 1982. The station was intended to have four Sovietdesigned<br />

VVER-440 pressurised water reactors, which<br />

were to be manufactured by Skoda in Czechoslovakia. But<br />

public opposition to the project arose in 1986 in the aftermath<br />

of the Chernobyl disaster in neighbouring Soviet<br />

Ukraine and work on Zarnowiec was suspended in 1989.<br />

The project was formally scrapped in 1990.<br />

Fast forward nearly two decades and Poland revived<br />

its nuclear ambitions in 2009 as part of a drive to find<br />

alternatives to ageing coal-fired electricity generation,<br />

reduce greenhouse gas emissions and boost energy supply<br />

security.<br />

Poland, the largest economy among the EU’s eastern<br />

members, generated 80 % of its electricity from coal in<br />

2016, according to the International Energy Agency (IEA).<br />

The remaining 20 % came from wind, hydro, other<br />

fossil fuels and biofuels. This reliance on coal is a cheap<br />

way to produce energy but provides an enormous headache<br />

for any government trying to maintain economic<br />

growth and meet ever-stricter EU greenhouse gas emission<br />

targets.<br />

Nuclear, which provides reliable baseload supply and<br />

has overall lifecycle emissions that compare to wind power,<br />

seemed the logical choice. In 2014 the Polish ministry of<br />

economy adopted the Polish Nuclear Power Programme<br />

(PPEJ), which included the construction of up to 6 GW of<br />

capacity by 2035. According to the PPEJ, construction of a<br />

first unit should be completed by the end of 2024, and a<br />

second by 2029. The programme said a second nuclear<br />

station should be ready before 2035.<br />

In 2010, PGE EJ1 (Polska Grupa Energetyczna Energia<br />

Jądrowa 1) was set up and charged with the planning and<br />

construction of the first nuclear station with a capacity of<br />

up to 3,750 MW. PGE EJ1’s job would include site search,<br />

environmental impact assessment, various licensing<br />

procedures, construction and subsequent operation. The<br />

company is 70 % owned by Polish state-controlled utility<br />

PGE. The remaining 30 % share is equally spread between<br />

three state-run companies, Enea, KGHM Polska Miedz and<br />

Tauron Polska Energia.<br />

Under the proposed schedule in the PPEJ, site selection<br />

and a tender process should have been concluded by the<br />

end of 2016 and licensing by the end of <strong>2018</strong>. In reality,<br />

development of the nuclear programme has not gone to<br />

schedule and these deadlines have become increasingly<br />

unrealistic.<br />

Delays . . . And some Progress<br />

According to Professor Grzegorz Wrochna of the NCBJ one of<br />

the problems was that the PPEJ had assumed the project<br />

would take 10 years from the investment decision to<br />

operation of the first reactor. This schedule was based on<br />

International Atomic Energy Agency (IAEA) documents,<br />

which were in turn based on the experience of other nuclear<br />

countries. However, it soon became clear that Poland would<br />

need 16 years to get its nuclear programme operational<br />

because existing Polish laws did not allow many of the<br />

regulatory processes to run in parallel to each other.<br />

Delays also arose when, in December 2014, PGE EJ1<br />

cancelled a contract with Woorley Parsons over slow<br />

progress on site characterisation and licensing work.<br />

PGE EJ1 awarded the contract to Woorley Parsons in 2013<br />

with 2016 set as a deadline. PGE EJ1 had to take over the<br />

contractor’s tasks.<br />

However, there has been progress. In April 2017,<br />

PGE EJ1 began environmental and site selection surveys at<br />

two locations: Lubiatowo-Kopalino in the municipality of<br />

Choczewo and Żarnowiec in the municipality of Krokowa,<br />

both in northern Pomerania, west of the city of Gdansk.<br />

The studies aim to determine the potential impact of the<br />

project on both the environment and local residents. This<br />

work is expected to be completed by 2020.<br />

In October 2015 general elections in Poland brought<br />

the conservative Law and Justice party to power and<br />

responsibility for the nascent nuclear programme was<br />

transferred to a newly formed ministry of energy. The new<br />

energy minister Krzysztof Tchorzewski confirmed work on<br />

the programme would continue, but that it needed to be<br />

reviewed. The review was expected to be completed by<br />

mid-2017, but that deadline was later extended to the end<br />

of 2017 and was never met.<br />

There have been few official updates from PGE EJ1<br />

or the energy ministry on the status of the nuclear<br />

programme.<br />

In January 2017, however, Mr Tchorzewski said he had<br />

received a mandate from the cabinet to present a new<br />

financing model for the project. A few months later he said<br />

the government had abandoned plans to finance the<br />

nuclear project by way of contracts for difference – similar<br />

to those set up for the Hinkley Point C nuclear station under<br />

construction in England – because it was too costly for<br />

consumers. He said the government would like to find<br />

funding on a commercial basis, without state guarantees<br />

on loans or electricity prices.<br />

PGE EJ1 has stopped short of confirming a financing<br />

scheme and has said all options remain on the drawing<br />

Inside Nuclear with NucNet<br />

Poland Faces Delays and Decisions as It Makes Ambitious Plans to Go Nuclear ı June/July


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

board. Recently, the Polish media has speculated about<br />

possible government plans to involve state-owned energy<br />

companies in the nuclear project. Officials from Orlen,<br />

Poland’s largest oil refiner and petrol retailer, recently<br />

hinted to journalists that the company would be interested<br />

in cooperating with PGE EJ1 on the nuclear project.<br />

In another twist, in September 2017, Jozef Sobolewski,<br />

director of the Polish ministry of energy’s nuclear energy<br />

department, told a parliamentary committee on nuclear<br />

energy that the government was considering using<br />

“ domestic” financing for construction of the first station.<br />

He said the government did not want to have its decision<br />

about the project dominated by financial markets. “It's not<br />

a financial project, it’s an energy project”, he said.<br />

Mr Sobolewski estimated the cost of building 1 GW of<br />

nuclear capacity at € 2.8 bn to € 3.25 bn, based on the<br />

assumption that a 3-GW station would be built.<br />

Rafał Zasun, an editor at the specialised energy portal<br />

Wysokie Napiecie, told NucNet that the main reason for<br />

delaying the final decision on the nuclear programme is<br />

the government’s inability to agree on its financing. “The<br />

idea of building a nuclear power station has strong<br />

opponents in government and in state-owned energy<br />

companies”, he said.<br />

According to Aleksandra Gawlikowska-Fyk, head of the<br />

international economic relations and energy policy<br />

programme at the Polish Institute of International Affairs,<br />

the energy ministry is in the process of revising the national<br />

energy policy framework for the first time since 2009.<br />

Because there are many overlapping aspects, the review<br />

impacts the nuclear programme’s schedule, she said.<br />

A decision is now expected by mid-<strong>2018</strong>, according to<br />

the latest reports.<br />

Why Does Poland Need Nuclear?<br />

Poland needs nuclear because of its low carbon footprint<br />

and as a way to decrease the country’s carbon emissions,<br />

said energy minister Krzysztof Tchorzewski. He told a<br />

recent conference that Poland’s ongoing large-scale<br />

investment in three new coal-fired power plants may be<br />

the country’s last fossil fuel venture, indicating a possible<br />

energy shift in the country’s revived plans to embrace<br />

nuclear power.<br />

There are other factors that point to the need for<br />

nuclear. Poland signed up to the EU’s target to reduce<br />

greenhouse gas emissions by 20 % from 1990 levels by<br />

2020. It has had one of the fastest growing economies in<br />

the EU for the past decade and electricity demand is<br />

expected to grow by about 36 % by 2030.<br />

“Poland needs to decrease emissions and nuclear offers<br />

that”, Ms Gawlikowska-Fyk said. “This argument has been<br />

used for years”.<br />

“It is no secret that the European Commission expects a<br />

vision of the future energy mix in the country and nuclear<br />

is showcased by Poland as a way to reduce emissions”, she<br />

said.<br />

According to Ms Gawlikowska-Fyk, smog is “the<br />

elephant in the room” and a significant influence on Polish<br />

public opinion. A report by the World Health Organisation<br />

(WHO) says that out of the 50 European cities most<br />

affected by smog, 33 are in Poland. The WHO estimates<br />

that around 50,000 Poles die every year due to illness<br />

caused by air pollution.<br />

But the prominence of coal mining and coal-related<br />

industries in Poland presents challenges to every government<br />

when it comes to energy sector reforms. Poland is the<br />

second largest coal mining country in Europe, second to<br />

Germany, and the coal industry employs 100,000 people.<br />

However, experts have warned for years that the<br />

cheapest sources of coal in the Silesian Basin are nearly<br />

depleted and that the country’s mining sector will have to<br />

prepare for higher costs in the future.<br />

Meanwhile, work continues on the choice of a<br />

technology for the project. The PPEJ did not shortlist a<br />

technology; the only requirement is for reactors to be of<br />

the Generation III/III+ design because of their improved<br />

safety and 60-year design lifespan. The number of units<br />

that will be built and their site configuration will depend<br />

on the technology choice.<br />

In December 2015 PGE EJ1 said five companies had<br />

expressed an interest in supplying reactor technology. They<br />

were GE-Hitachi Nuclear Energy Americas, Korea Electric<br />

Power Corporation, SNC-Lavalin Nuclear Inc, Westinghouse<br />

Electric Company and Areva (now Framatome). PGE EJ1<br />

said at the time that preliminary discussions had been held<br />

with all five.<br />

A public tender for the construction of the first nuclear<br />

power station was scheduled to be announced in late 2017<br />

or early <strong>2018</strong>, but this now seems unlikely.<br />

Author<br />

NucNet<br />

The Independent Global Nuclear News Agency<br />

Editor responsible for this story: Kamen Kraev<br />

Avenue des Arts 56<br />

1000 Brussels, Belgium<br />

www.nucnet.org<br />

INSIDE NUCLEAR WITH NUCNET 367<br />

Inside Nuclear with NucNet<br />

Poland Faces Delays and Decisions as It Makes Ambitious Plans to Go Nuclear ı June/July


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

CALENDAR 368<br />

Calendar<br />

<strong>2018</strong><br />

16.<strong>07</strong>.-19.<strong>07</strong>.<strong>2018</strong><br />

International Conference on Quality, Leadership<br />

and Management in the Nuclear Industry –<br />

15 th IAEA-FORATOM Management Systems Workshop.<br />

Ottawa, Canada, organized in cooperation<br />

between FORATOM and the International Atomic<br />

Energy Agency, www.foratom.org, www.iaea.org<br />

29.<strong>07</strong>.-02.08.<strong>2018</strong><br />

International Nuclear Physics Conference 2019.<br />

Glasgow, United Kingdom, www.iop.org<br />

30.<strong>07</strong>.-03.08.<strong>2018</strong><br />

14 th Joint ICTP-IAEA School on Nuclear<br />

Knowledge Management. Trieste, Italy,<br />

International Atomic Energy Agency (IAEA) and<br />

Abdus Salam International Centre for Theoretical<br />

Physics (ICTP), www.iaea.org<br />

12.08.-17.08.<strong>2018</strong><br />

GOLDSCHMIDT Conference. Boston, USA,<br />

Geochemical Society and the European Association<br />

of Geochemistry, www.goldschmidt.info/<strong>2018</strong><br />

22.08.-31.08.<strong>2018</strong><br />

Frédéric Joliot/Otto Hahn (FJOH) Summer School<br />

FJOH-<strong>2018</strong> – Maximizing the Benefits of<br />

Experiments for the Simulation, Design and<br />

Analysis of Reactors. Aix-en-Provence, France,<br />

Nuclear Energy Division of Commissariat à l’énergie<br />

atomique et aux énergies alternatives (CEA) and<br />

Karlsruher Institut für Technologie (KIT),<br />

www.fjohss.eu<br />

28.08.-31.08.<strong>2018</strong><br />

TINCE <strong>2018</strong> – Technological Innovations in<br />

Nuclear Civil Engineering. Paris Saclay, France,<br />

Société Française d’Energie Nucléaire,<br />

www.sfen.org, www.sfen-tince<strong>2018</strong>.org<br />

02.09.-06.09.<strong>2018</strong><br />

19 th International Nuclear Graphite Specialists<br />

Meeting (INGSM-19). Shanghai Institute of Applied<br />

Physics, Shanghai, China, ingsm.csp.escience.cn<br />

03.09.-06.09.<strong>2018</strong><br />

Jahrestagung des Fachverbandes Strahlenschutz.<br />

Dresden, Germany, Fachverband für Strahlenschutz<br />

e.V., www.fs-ev.org<br />

04.09.-05.09.<strong>2018</strong>.<br />

8. Symposium Lagerung und Transport radioaktiver<br />

Stoffe. Hannover, Germany, TÜV NORD<br />

Akademie, www.tuev-nord.de<br />

05.09.-<strong>07</strong>.09.<strong>2018</strong><br />

World Nuclear Association Symposium <strong>2018</strong>.<br />

London, United Kingdom, World Nuclear Association<br />

(WNA), www.world-nuclear.org<br />

09.09.-14.09.<strong>2018</strong><br />

21 st International Conference on Water<br />

Chemistry in Nuclear Reactor Systems.<br />

San Francisco, CA, USA, EPRI – Electric Power<br />

Research Institute, www.epri.com<br />

12.09.-14.09.<strong>2018</strong><br />

SaltMech IX – 9 th Conference on the Mechanical<br />

Behavior of Salt. Hannover, Germany, Federal<br />

Institute for Geosciences and Natural Resources<br />

(BGR) Hannover, the Institute of Geomechanics (IfG)<br />

Leipzig and the Technical University of Clausthal<br />

(TUC), www.saltmech.com<br />

16.09.-20.09.<strong>2018</strong><br />

55 th Annual Meeting on Hot Laboratories and<br />

Remote Handling – HOTLAB <strong>2018</strong>. Helsinki,<br />

Finland, VTT and International Atomic Energy<br />

Agency (IAEA), www.vtt.fi/sites/hotlab<strong>2018</strong>/<br />

17.09.-21.09.<strong>2018</strong><br />

62 nd IAEA General Conference. Vienna, Austria.<br />

International Atomic Energy Agency (IAEA),<br />

www.iaea.org<br />

17.09.-20.09.<strong>2018</strong><br />

FONTEVRAUD 9. Avignon, France,<br />

Société Française d’Energie Nucléaire (SFEN),<br />

www.sfen-fontevraud9.org<br />

17.09.-19.09.<strong>2018</strong><br />

4 th International Conference on Physics and<br />

Technology of Reactors and Applications –<br />

PHYTRA4. Marrakech, Morocco, Moroccan<br />

Association for Nuclear Engineering and Reactor<br />

Technology (GMTR), National Center for Energy,<br />

Sciences and Nuclear Techniques (CNESTEN) and<br />

Moroccan Agency for Nuclear and Radiological<br />

Safety and Security (AMSSNuR), phytra4.gmtr.ma<br />

19.09.-21.09.<strong>2018</strong><br />

Workshop Sicherheitskonzepte Endlagerung.<br />

Grimsel, Switzerland. Fachverband für Strahlenschutz<br />

e.V., www.fs-ev.org<br />

26.09.-28.09.<strong>2018</strong><br />

44 th Annual Meeting of the Spanish Nuclear<br />

Society. Avila, Spain, Sociedad Nuclear Española,<br />

www.sne.es<br />

30.09.-05.10.<strong>2018</strong><br />

14 th Pacific Basin Nuclear Conference (PBNC).<br />

San Francisco, CA, USA, pbnc.ans.org<br />

30.09.-03.10.<strong>2018</strong><br />

Fifteenth NEA Information Exchange Meeting on<br />

ctinide and Fission Product Partitioning and<br />

Transmutation. Manchester Hall, Manchester, UK,<br />

OECD Nuclear Energy Agency (NEA), National<br />

Nuclear Laboratory (NNL) in co‐operation with the<br />

International Atomic Energy Agency (IAEA),<br />

www.oecd-nea.org<br />

30.09.-04.10.<strong>2018</strong><br />

TopFuel <strong>2018</strong>. Prague, Czech Republic, European<br />

Nuclear Society (ENS), American Nuclear Society<br />

(ANS). Atomic Energy Society of Japan, Chinese<br />

Nuclear Society and Korean Nuclear Society,<br />

www.euronuclear.org<br />

01.10.-05.10.<strong>2018</strong><br />

3 rd European Radiological Protection Research<br />

Week ERPW. Rovinj, Croatia, ALLIANCE, EURADOS,<br />

EURAMED, MELODI and NERIS, www.erpw<strong>2018</strong>.com<br />

02.10.-04.10.<strong>2018</strong><br />

7 th EU Nuclear Power Plant Simulation ENPPS<br />

Forum. Birmingham, United Kingdom, Nuclear<br />

Training & Simulation Group, www.enpps.tech<br />

08.10.-11.10.<strong>2018</strong><br />

World Energy Week. World Energy Council Council’s<br />

Italian Member Committee, www.worldenergy.org<br />

09.10.-11.10.<strong>2018</strong><br />

8 th International Conference on Simulation<br />

Methods in Nuclear Science and Engineering.<br />

Ottawa, Ontario, Canada, Canadian Nuclear Society<br />

(CNS), www.cns-snc.ca<br />

10.10.-11.10.<strong>2018</strong><br />

IGSC Symposium <strong>2018</strong> – Integrated Group for the<br />

Safety Case; Current Understanding and Future<br />

Direction for the Geological Disposal of Radioactive<br />

Waste. Rotterdam, The Netherlands, OECD<br />

Nuclear Energy Agency (NEA), www.oecd-nea.org<br />

14.10.-18.10.<strong>2018</strong><br />

12 th International Topical Meeting on Nuclear<br />

Reactor Thermal-Hydraulics, Operation and<br />

Safety – NUTHOS-12. Qingdao, China, Elsevier,<br />

www.nuthos-12.org<br />

14.10.-18.10.<strong>2018</strong><br />

NuMat <strong>2018</strong>. Seattle, United States,<br />

www.elsevier.com<br />

16.10.<strong>2018</strong><br />

The next steps for nuclear energy projects in the<br />

UK. London, United Kingdom, Westminster Energy,<br />

Environment & Transport Forum,<br />

www.westminsterforumprojects.co.uk<br />

16.10.-17.10.<strong>2018</strong><br />

4 th GIF Symposium at the 8th edition of Atoms<br />

for the Future. Paris, France, www.gen-4.org<br />

22.10.-24.10.<strong>2018</strong><br />

DEM <strong>2018</strong> Dismantling Challenges: Industrial<br />

Reality, Prospects and Feedback Experience. Paris<br />

Saclay, France, Société Française d’Energie Nucléaire,<br />

www.sfen.org, www.sfen-dem<strong>2018</strong>.org<br />

24.10.-26.10.<strong>2018</strong><br />

NUWCEM <strong>2018</strong> Cement-based Materials for<br />

Nuclear Waste. Avignon, France, French<br />

Commission for Atomic and Alternative Energies<br />

and Société Française d’Energie Nucléaire,<br />

www.sfen-nuwcem<strong>2018</strong>.org<br />

24.10.-25.10.<strong>2018</strong><br />

Chemistry in Power Plants. Magdeburg, Germany,<br />

VGB PowerTech e.V., www.vgb.org<br />

05.11.-08.11.<strong>2018</strong><br />

International Conference on Nuclear<br />

Decom missioning – ICOND <strong>2018</strong>. Aachen,<br />

Eurogress, Germany, achen Institute for Nuclear<br />

Training GmbH, www.icond.de<br />

06.11-08.11.<strong>2018</strong><br />

G4SR-1 1 st International Conference on<br />

Generation IV and Small Reactors. Ottawa,<br />

Ontario, Canada. Canadian Nuclear Society (CNS),<br />

and Canadian Nuclear Laboratories (CNL),<br />

www.g4sr.org<br />

13.11.-15.11.<strong>2018</strong><br />

24 th QUENCH Workshop <strong>2018</strong>. Karlsruhe, Germany,<br />

Karlsruhe Institute of Technology in cooperation with<br />

the International Atomic Energy Agency (IAEA),<br />

quench.forschung.kit.edu<br />

03.12.-14.12.<strong>2018</strong><br />

United Nations, Conference of the Parties –<br />

COP24. Katowice, Poland, United Nations<br />

Framework Convention on Climate Change –<br />

UNFCCC, www.cop24.katowice.eu<br />

06.12.<strong>2018</strong><br />

Nuclear <strong>2018</strong>. London, United Kingdom, Nuclear<br />

Industry Association (NIA), www.niauk.org<br />

2019<br />

25.02.-26.02.2019<br />

Symposium Anlagensicherung. Hamburg,<br />

Germany, TÜV NORD Akademie, www.tuev-nord.de<br />

10.03.-15.03.2019<br />

83. Annual Meeting of DPG and DPG Spring<br />

Meeting of the Atomic, Molecular, Plasma Physics<br />

and Quantum Optics Section (SAMOP), incl.<br />

Working Group on Energy. Rostock, Germany,<br />

Deutsche Physikalische Gesellschaft e.V.,<br />

www.dpg-physik.de<br />

10.03.-14.03.2019<br />

The 9 th International Symposium On<br />

Supercritical- Water-Cooled Reactors (ISSCWR-9).<br />

Vancouver Marriott Hotel, Vancouver, British<br />

Columbia, Canada, Canadian Nuclear Society (CNS),<br />

www.cns-snc.ca<br />

<strong>07</strong>.05.-08.05.2019<br />

50 th Annual Meeting on Nuclear Technology<br />

AMNT 2019 | 50. Jahrestagung Kerntechnik.<br />

Berlin, Germany, DAtF and KTG,<br />

www.nucleartech-meeting.com – Save the Date!<br />

Calendar


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

49 th Annual Meeting on Nuclear Technology<br />

(AMNT <strong>2018</strong>): Opening Address<br />

29 to 30 May <strong>2018</strong>, Berlin<br />

Ralf Güldner<br />

Ladies and Gentlemen, on behalf of the DAtF and the German Nuclear Society (KTG), welcome to our<br />

49 th ­Annual Meeting on Nuclear Technology in Berlin. As in other years, we offer a comprehensive program, giving<br />

insights into many aspects of nuclear technology and contributing to the international exchange of knowledge and<br />

experience in industry, research, politics and administration.<br />

369<br />

AMNT <strong>2018</strong><br />

Ladies and Gentlemen,<br />

In keeping with long-standing tradition, even in the year<br />

preceding its 50 th anniversary, which I’d like to invite you<br />

to attend in Berlin on 7 and 8 May 2019, the AMNT remains<br />

the only conference in Germany, and one of the few in<br />

Europe, that combines all the issues surrounding nuclear<br />

technology under one roof and is dedicated to every sector<br />

of our industry.<br />

Waste management – old challenges,<br />

new structures<br />

It is not only Germany as a venue but also the relevance<br />

and complexity of the dismantling and waste management<br />

issues that again make them one of the focal points of our<br />

conference. The reorganization of nuclear waste management<br />

in Germany, which has been negotiated and put into<br />

legal form over the last few years, is as such broadly<br />

complete following approval by the European Union and<br />

the transfer of around EUR 24.1 billion to the state waste<br />

management fund by the operators on 3 June 2017.<br />

However, the transfer of responsibility for the site-based<br />

interim storage facilities to the Federal Company for Interim<br />

Storage (BGZ Gesellschaft für Zwischenlagerung mbH) is still<br />

pending. But let me give you an overview of the status quo<br />

based on the new structure.<br />

The search for a final repository<br />

is slowly gaining momentum<br />

The Federal Office for the Safety of Nuclear Waste Management<br />

(Bundesamt für kerntechnische Entsorgungssicherheit<br />

– BfE) is, in its own words, “a growing authority<br />

with growing responsibilities”. In the public perception,<br />

according to the Site Selection Act (StandAG), the BfE is<br />

currently complying with the second part of the task<br />

assigned to it by the legislator: “The Federal Office for the<br />

Safety of Nuclear Waste Management is the body responsible<br />

for organising public participation in the site selection process.<br />

It informs the public comprehensively and system atically<br />

about the site selection process.” The breadth of issues dealt<br />

with by the BfE’s publications is evidence of this.<br />

At this point, I would also like to mention the work of<br />

the national advisory committee which recently presented<br />

its first report on the selection process for a final repository<br />

site. Broad public participation in the work of the advisory<br />

committee is essential for performing the tasks assigned to<br />

it and is therefore desirable.<br />

Other key tasks of the BfE according to the Site Selection<br />

Act (StandAG) are: specification of the exploration programmes,<br />

examination of the project developer’s proposals<br />

and the preparation of well-founded recom mendations<br />

based on them as well as monitoring of the site selection<br />

process. However, this initially requires pre liminary work<br />

that is currently in process, including<br />

the selection of site regions and the<br />

sites to be explored.<br />

The Federal Company for Radioactive<br />

Waste Disposal (Bundesgesellschaft<br />

für Endlagerung – BGE) is responsible<br />

for this and Dr. Jörg Tietze, Acting<br />

Head of Site Selection within the BGE,<br />

will tell us about its work today. As the<br />

project developer, the BGE has to<br />

“ carry out the site selection process”<br />

according to the will of the legislator.<br />

The BGE which is also responsible, of course, for the<br />

Konrad final repository has now announced a concrete<br />

date for completion of the final repository in the first six<br />

months of 2027. Measured against the original objective,<br />

that is to say 2013, the criticism regarding the extent of the<br />

delay, particularly on the part of the public authorities, for<br />

example in Baden-Württemberg or Schleswig-Holstein, is<br />

entirely comprehensible. However, we now see this fixing<br />

of a date as a kind of voluntary commitment by which it<br />

must be measured.<br />

On 1 August of last year, the Company for Interim<br />

Storage (BGZ Gesellschaft für Zwischenlagerung) became<br />

the property of the federal government and took over the<br />

responsibility for the central interim storage facilities in<br />

Ahaus and Gorleben. From 1 January 2019, the company<br />

will take over the decentralised interim storage facilities<br />

with heat-generating waste and, from 1 January 2020, the<br />

interim storage facilities for waste with negligible heat<br />

generation.<br />

The BGZ will also need the skills it has acquired in the<br />

process for the construction of a central receiving store for<br />

Konrad. This important task and the responsibility for all<br />

interim storage facilities will broaden the BGZ’s range of<br />

responsibilities and strengthen public perception of the<br />

company.<br />

Good and trusting collaboration<br />

between state actors and private operators<br />

is indispensable for public acceptance<br />

A smooth working relationship between state agencies and<br />

private operators as part of this reorganization is crucial<br />

not only for safety and efficiency but also for public acceptance<br />

of the newly created structures and regulations. The<br />

operators are fully committed to the obligations agreed and<br />

we also expect this from our contractual partners.<br />

Dismantling: operators meeting<br />

their obligations without any ifs or buts<br />

The operators are committed, without any ifs or buts, to<br />

their obligation to drive forward safe and efficient<br />

AMNT <strong>2018</strong><br />

49 th Annual Meeting on Nuclear Technology (AMNT <strong>2018</strong>): Opening Address ı Ralf Güldner


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

370<br />

AMNT <strong>2018</strong><br />

dismantling and have already received a whole series of<br />

licenses for this. Unfortunately, challenges are arising that<br />

are neither objectively justifiable nor covered by regulatory<br />

requirements. This applies in particular to the release of<br />

rubble from nuclear power plants and taking it to public<br />

landfill sites. Some of the cited public criticism about<br />

alleged health risks is inappropriate and does not<br />

contribute to solving this task for the whole of society.<br />

The rubble released from dismantling<br />

is harmless to health<br />

Unsettling the local residents of the landfill sites concerned<br />

with unfounded and alarmist claims unnecessarily complicates<br />

a safe and internationally recognised disposal path<br />

and considerably hinders dismantling. It is gratifying that<br />

socially recognised institutions, such as the German<br />

Medical Association (Bundesärztekammer), are successfully<br />

resisting the attempt to exploit them for the purpose of a<br />

discrediting campaign. We would sincerely like to thank<br />

the Board of the German Medical Association and its president,<br />

Prof. Dr. Frank Ulrich Montgomery, for confirming<br />

that the resolution taken by the 120 th German Medical<br />

Assembly, which critically questions the 10 microsievert<br />

concept, is scientifically untenable. It is very important and<br />

very positive to see authorities, operators and policymakers<br />

working together on this issue. Here I would like to<br />

quote Franz Untersteller, Baden-Württemberg’s Minister<br />

for the Environment: “The rubble which we have now cleared<br />

for landfill is harmless to health.”<br />

No technically unfounded, regulatory<br />

tightening for phase-out operation<br />

It would be desirable and important for us to continue this<br />

broad consensus on other issues too, such as the smooth<br />

return of waste from reprocessing in France and the United<br />

Kingdom, and above all on politically trouble-free phaseout<br />

operation of nuclear power plants.<br />

We welcome the federal government’s intention to<br />

implement the judgment of the Federal German Constitutional<br />

Court of 6.12.2016 with the 16 th Atomic Energy<br />

Amendment Act and thus to pacify long-standing disputes<br />

and protect employees affected by the structural change.<br />

The decision to convert the electricity quantities agreed in<br />

2000/2001 into electricity within the remaining operating<br />

time will have a positive effect not only on the federal<br />

budget but also on CO 2 -emissions.<br />

The current draft bill still needs some clarification to<br />

avoid further disputes. It has to be made clear that there<br />

must be not only a “fair” but a complete settlement in money,<br />

that is for all non-convertable quantities within the<br />

group and not just for the quantities that are not transferred.<br />

The values of the electricity quantities existing at<br />

the time of the compensation-triggering event must be taken<br />

as a basis and the appropriate interest paid. Payments<br />

already made for a transfer must be taken into account.<br />

Only in this way can constitutionality be restored. Any limit<br />

imposed on compensation claims must not result in the<br />

power generation deficit determined by the German Federal<br />

Constitutional Court not being fully compensated.<br />

Isolated positive signals in the coalition<br />

agreement – the implementation is what<br />

is important<br />

Overall, it will be exciting to see how things progress with<br />

nuclear power in particular and nuclear technology in<br />

general in Germany. Karsten Möring, Member of the German<br />

Bundestag, rapporteur for nuclear energy in the CDU/CSU<br />

parliamentary group, will give us an insight into the future<br />

of both immediately following this speech. However, if we<br />

try to gain an impression ourselves based on the current<br />

coalition agreement, then it is basically positive.<br />

The following was agreed in the wording: “We stand for<br />

speedy implementation in the search for a final repository for<br />

highly active waste in accordance with the Repository Site<br />

Selection Act. We are adhering to the statutory goal of<br />

­establishing the site for a final repository by 2031.” It remains<br />

true that this milestone is already ambitious. According to<br />

the relevant experts, planning approval and construction<br />

are clearly likely to continue into the second half of the<br />

century. It remains to be seen how the implementation will<br />

be carried out, especially against the backdrop of extensive<br />

public participation and the legal remedies available.<br />

It was also agreed to develop “...a concept for the<br />

perspective preservation of specialist knowledge and staff for<br />

operation, dismantling and safety issues in nuclear facilities as<br />

well as for interim and final disposal.” It was stated absolutely<br />

correctly: “Anyone who wants to have a say in safety issues<br />

must also be able to do so. The preservation of expertise is indispensable<br />

for this.” For this reason too, the topic of preserving<br />

expertise is top of the agenda in the work of the DAtF.<br />

Sites in Gronau and Lingen must be<br />

maintained – Nuclear competence can only be<br />

preserved by means of further development<br />

To preserve expertise, it is necessary to further develop<br />

and apply nuclear skills and knowledge and therefore to<br />

continue to operate production facilities. Only in this way<br />

can Germany continue to have a say and also make<br />

decisions at international level. Fortunately, this realization<br />

is also gaining acceptance among political decisionmakers.<br />

Armin Laschet, Minister President of North-Rhine<br />

Westphalia, was completely right when he asserted in his<br />

speech at the state parliament on 1 March <strong>2018</strong>: “If we close<br />

Gronau, if we close Lingen, then this will mean that Germany<br />

is saying goodbye to this area of production. We will then no<br />

longer be a member of the International Atomic Energy<br />

Agency. [...] Gronau will therefore remain, […].” In his<br />

speech, Minister President Laschet meant the loss of a<br />

permanent seat on the IAEA Board of Governors.<br />

Drawing up a master plan for the further<br />

development of nuclear competence<br />

In view of the need to further develop nuclear competence<br />

and skills in order to tackle the upcoming tasks in Germany<br />

and to preserve the ability to have a say internationally, it is<br />

appropriate to ask here when the federal government will<br />

come up with a master plan for the further development of<br />

nuclear competence? A master plan that will allow Germany<br />

to adequately assess international development, whether in<br />

operation, regulation or research, in 10, 20 or even 30 years’<br />

time. And what will this master plan look like?<br />

AMNT <strong>2018</strong><br />

49 th Annual Meeting on Nuclear Technology (AMNT <strong>2018</strong>): Opening Address ı Ralf Güldner


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

Many countries continue to rely on<br />

nuclear power as part of a clean, low-carbon,<br />

sustainable electricity mix<br />

The worldwide development of nuclear energy emphasizes<br />

the topicality and importance of this question. With the<br />

start of construction on the first block of the Akkuyu NPP in<br />

Turkey on 3 April this year, which will be followed by three<br />

more blocks, we see the implementation of a project whose<br />

origins date back to the 1970s. EDF’s construction of the<br />

new Hinkley Point C in the United Kingdom is being<br />

boosted further by the 3,000 strong workforce working on<br />

it daily. The first block constructed by South Korea in<br />

Barakah in the United Arab Emirates is scheduled to go<br />

online this year. And with the run-up of Ohi-3 on 14 March<br />

and Genkai-3 on 23 March <strong>2018</strong>, Japan is still on its way<br />

back to becoming a leading nuclear nation. These are just<br />

a few examples that refute the frequently implied decline<br />

of nuclear energy. With initial criticality and first feed-in to<br />

the grid of the fifth nuclear power plant block at the<br />

Chinese site in Yangjiang, there are currently 451 nuclear<br />

power plants in operation worldwide – more than ever<br />

before in the over 60-year history of nuclear energy. At<br />

421 GW gross and almost 400 GW net, 399.8 GW to be<br />

exact, the output of the plants also hits record figures.<br />

The other 57 nuclear power plants currently under<br />

construction worldwide clearly show that many countries<br />

continue to choose nuclear power as part of a clean,<br />

low-carbon, sustainable electricity mix of the future. A<br />

joint report by the International Energy Agency, the<br />

International Renewable Agency, UNO organizations and<br />

the World Bank of 2 May <strong>2018</strong> predicts an increase in the<br />

share of nuclear power in global power generation to a<br />

total of 15 percent, from 10 percent at present. German<br />

companies and Germany-based companies, with their<br />

acknowledged expertise, particularly in nuclear safety<br />

issues, have great potential to participate in this development.<br />

However, this requires reliable and ideology-free<br />

support for export activities. This would also secure the<br />

urgently needed development of competence in the<br />

nuclear technology field in the long term.<br />

Nuclear energy research continues<br />

to be promoted internationally<br />

An important milestone in the ITER project was reached in<br />

November of last year when 50 percent of the total output<br />

on the way to the first plasma was generated. Despite some<br />

scepticism about the project, including among our own<br />

ranks, we are hopeful about the outcome of this exemplary<br />

international collaboration.<br />

Development in the field of SMRs also remains exciting.<br />

The announcement by Rolls Royce of bringing electricity<br />

costs to the level of offshore wind power and the creation<br />

of a new technical working group at IAEA dedicated to<br />

SMRs give a new boost to the development of compact<br />

small reactors as does the transport, which commenced on<br />

28 April <strong>2018</strong>, of the world’s first floating nuclear power<br />

plant from St. Petersburg to its site of operation.<br />

Nuclear technology is more than<br />

nuclear power<br />

Against this background, we do not intend to challenge<br />

Germany’s phasing out of nuclear power. The phase out,<br />

however, does not mean that Germany should be allowed<br />

to become a nuclear technology-free zone. Nuclear<br />

technology, as we know, is more than just power generation.<br />

This is why, as the DAtF, we are increasingly devoting<br />

ourselves to other topics. We must oppose the efforts of<br />

some political forces to phase out the use of nuclear<br />

technology in other areas such as medicine, agriculture<br />

and industry.<br />

This means that not only top-level research, such as the<br />

Garching research reactor FRM II, which holds the world’s<br />

best ratio of thermal output to neutron flux and is thus one<br />

of the most effective and modern neutron sources in the<br />

world, but also everyday applications must also be maintained.<br />

We need to raise public awareness of the fact that<br />

nuclear technology associated with<br />

• medical applications such as X-rays, computed<br />

tomography, radiation treatment and diagnostic<br />

applications,<br />

• the killing of germs in the food industry and in<br />

medicine,<br />

• the treatment of seeds and the development of new<br />

plant species,<br />

• the non-destructive testing of materials and joints in<br />

the aviation and automotive industries<br />

is part of our everyday life. The aim is to raise public<br />

awareness of the fundamental importance of maintaining<br />

nuclear research and applications in Germany.<br />

Successful AMNT as the annual meeting of the<br />

whole industry<br />

Ladies and Gentlemen,<br />

With your commitment, you all make an important<br />

con tribution to the development of nuclear competence,<br />

not only in Germany but worldwide. It is you who actually<br />

make the AMNT, as an international platform for<br />

knowledge and dialogue, possible and who fill it with life;<br />

who plan and are responsible for the programme, give<br />

presentations and enrich our Annual Meeting with your<br />

participation. For this you have my heartfelt thanks.<br />

I would also like to sincerely thank our many partners<br />

who are providing an exceptional display at the completely<br />

sold-out industry exhibition. I am also pleased to welcome<br />

our British partners. Our intensive discussions as part of<br />

the last “Energy in Dialogue” event as well as the personal<br />

exchange between the DAtF and British government<br />

representatives on the topic of Brexit are currently arousing<br />

justified hope that this collaboration will continue largely<br />

undisturbed. The fact that, in addition to nuclear communities<br />

from the United Kingdom and the Czech Republic,<br />

we are also welcoming many well-known but new exhibitors<br />

from home and abroad strengthens this hope. The<br />

breaks are a good opportunity for obtaining information<br />

and exchanging ideas and opinions.<br />

The DAtF reception, to which you are all cordially<br />

invited, will take place immediately after the second part<br />

of the plenary session. Following this, we can look forward<br />

to the traditional social evening which our exhibitors and<br />

sponsors warmly invite you to attend.<br />

Ladies and Gentlemen,<br />

I wish everybody a successful meeting with fruitful and<br />

interesting discussions and exceptional insights.<br />

Author<br />

Dr. Ralf Güldner<br />

President of the DAtF<br />

(German Atomic Forum)<br />

Robert-Koch-Platz 4<br />

10115 Berlin, Germany<br />

371<br />

AMNT <strong>2018</strong><br />

AMNT <strong>2018</strong><br />

49 th Annual Meeting on Nuclear Technology (AMNT <strong>2018</strong>): Opening Address ı Ralf Güldner


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

AMNT <strong>2018</strong><br />

372<br />

AMNT <strong>2018</strong><br />

49 th Annual Meeting on Nuclear Technology (AMNT <strong>2018</strong>): Impressions


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

AMNT <strong>2018</strong><br />

373<br />

AMNT <strong>2018</strong><br />

49 th Annual Meeting on Nuclear Technology (AMNT <strong>2018</strong>): Impressions


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

374<br />

AMNT <strong>2018</strong><br />

TESPA-ROD Code Prediction of the Fuel<br />

Rod Behaviour During Long-term Storage<br />

Heinz G. Sonnenburg<br />

| | AMNT <strong>2018</strong>: Best Paper Award, awarded by Dr. Erwin Fischer (left) to<br />

Dr. Heinz G. Sonnenburg (right).<br />

| | Fig. 1.<br />

Crystallographic length change of UO 2 /PuO 2 -fuel relative to displacement per atom (dpa) [RAY 15].<br />

The paper “TESPA-<br />

ROD Code Prediction<br />

of the Fuel Rod<br />

Behaviour During<br />

Long-term Storage” by<br />

Heinz G. Sonnenburg<br />

has been awarded as<br />

Best Paper of the<br />

49 th Annual Meeting<br />

on Nuclear Technology<br />

(AMNT <strong>2018</strong>), Berlin,<br />

29 and 30 May <strong>2018</strong>.<br />

Introduction The TESPA-ROD code is applicable to both LOCA and RIA transients. Recently, the code’s models<br />

have been extended in order to predict the transitional fuel rod behaviour during long-term storage [SON 17].<br />

Due to permanent α-decay of actinides<br />

in the fuel during long-term storage,<br />

both fuel swelling and helium release<br />

continue and generate an impact on<br />

the fuel rod behaviour. Therefore, the<br />

TESPA-ROD code extension requires<br />

particular modelling of fuel swelling<br />

and modelling of the associated<br />

helium gas release. These processes<br />

and their modelling have significant<br />

impact on the prediction of cladding’s<br />

stress level.<br />

Continued fuel swelling reduces<br />

the gap between fuel and cladding<br />

which reduces the fuel rod fission<br />

gas volume and might increase<br />

the fuel rod inner pressure by that.<br />

Simultaneously, the release of<br />

helium tends to keep the rod<br />

internal pressure high, thus the<br />

gap between fuel and cladding could<br />

be enlarged. If fuel swelling is the<br />

dominating process, as in case of<br />

MOX fuel, even gap closure might<br />

occur which leads to pellet- cladding<br />

interaction which finally enhances<br />

significantly the stress level in the<br />

cladding. A priori, which effect<br />

dominates cannot be estimated with<br />

simple engineering judgment. Therefore,<br />

a code prediction is inevitable<br />

in order to get reliable estimates about<br />

dominating processes.<br />

Fuel swelling<br />

Fuel in a fuel rod accumulates fission<br />

gases in the fuel matrix during normal<br />

operation. E.g., small gas bubbles of<br />

micrometer size appear within the<br />

fuel grain at higher burn-up levels.<br />

Because the accumulation of fission<br />

gas in the fuel matrix is limited, some<br />

quantity of fission gas will get released<br />

from fuel.<br />

There is a well-known interlinkage<br />

between the accumulation of fission<br />

gas and swelling of the pellet. The<br />

more the fuel accumulates fission gas,<br />

the more the fuel swells.<br />

The same mechanism is true for<br />

the long-term storage, but here helium<br />

is accumulated instead of fission<br />

gases. This helium stems from the<br />

decay of α-emitting actinides.<br />

Patrick Raynaud [RAY 15] from<br />

US.NRC has compiled fuel swelling<br />

correlations for UO 2 fuel and PuO 2<br />

fuel which refer to the α-decay in the<br />

fuel (Figure 1). Correlating parameter<br />

is dpa (displacement per atom). This<br />

compilation reveals a swelling mechanism<br />

which saturates at a certain<br />

maximal swelling level. Consequently,<br />

the swelling can be expressed as<br />

exponential function:<br />

upper bounding values (1)<br />

and<br />

mean values (2)<br />

where ∆a is the change of lattice<br />

parameter, a 0 is the undeformed<br />

lattice parameter.<br />

The parameter dpa correlates with<br />

time. Raynaud /RAY 15/ provides for<br />

60 GWd/t UO 2 fuel the relation<br />

dpa(t) =0.01172 t 0.72246 , where t is<br />

measured in years. In case of MOX<br />

fuel, this relation can be multiplied by<br />

3, because MOX fuel has 3-times more<br />

α-decays, see figure 5.3 on page 54 in<br />

[SON 17].<br />

The swelling mechanism, as correlated<br />

above, refers mainly to the production<br />

of Frenkel pairs and helium<br />

atoms at interstitial positions in the<br />

crystal structure of UO 2 . The effect<br />

AMNT <strong>2018</strong><br />

TESPA-ROD Code Prediction of the Fuel Rod Behaviour During Long-term Storage ı Heinz G. Sonnenburg


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

AMNT <strong>2018</strong><br />

375<br />

| | Fig. 2.<br />

Evolution of fuel rod temperature (all curves FGR=10 %…40 % overlap).<br />

| | Fig. 3.<br />

Evolution of internal gas pressure.<br />

| | Fig. 4.<br />

Evolution of gap size.<br />

| | Fig. 5.<br />

Evolution of hoop stress.<br />

of helium bubble formation due to<br />

accumulation of α-particles in bubbles<br />

is presumably underrepresented in<br />

the experimental investigations mentioned<br />

in figure 1. According to Wiss<br />

et al. [WIS 14] this accumulation<br />

effect would dominate in case of very<br />

high alpha doses. Thus fuel swelling<br />

saturation could also be observed<br />

at 0.6 % instead of 0.4642 % as<br />

mentioned in Figure 1. Therefore, the<br />

characterization “upper bounding<br />

values” in Figure 1 has to be taken<br />

with caution.<br />

Helium gas release<br />

The characteristic saturation of the<br />

fuel length change ∆a/a 0 is an<br />

indication that the accumulation of<br />

helium within the fuel matrix is<br />

limited. Therefore, the shape of the<br />

curve above is taken in order to<br />

quantify the fraction of produced<br />

helium which gets released from fuel<br />

matrix. The more the saturation in<br />

Figure 1 is reached the larger the<br />

fraction of produced helium atoms<br />

is. E.g., this interlinkage can be<br />

expressed with:<br />

(3)<br />

<br />

where HeF released (t) is considered as fraction of produced helium mol rate at<br />

time t that gets released from fuel matrix. Equation (3) refers to the upper<br />

bounding swelling correlation given with equation (1). Consequently, the<br />

helium mol rate produced and retained in fuel matrix is:<br />

(4)<br />

Whereas the helium mol rate released from fuel matrix is:<br />

(5)<br />

The helium production rate from α-decay Ḣe produced (t) within the UO 2 fuel<br />

matrix can be approximated with:<br />

(6)<br />

Therefore, the TESPA-ROD modelling<br />

approach for helium release follows<br />

the concept of an athermal helium<br />

release, because a) annealing tests<br />

reveal a minimum temperature of<br />

800 K for the start of thermal helium<br />

release [WIS 14] and b) high burn-up<br />

structure with fuel grain size below<br />

1 µm offers a huge intergranular<br />

surface thus α-particles can easily<br />

escape from these grains without<br />

thermal controlled diffusion.<br />

TESPA-ROD predictions<br />

for long-term storage<br />

The TESPA-ROD prediction for longterm<br />

storage significantly depends on<br />

the normal operating condition of the<br />

fuel rod just before reactor shut down.<br />

If the fuel rod burn-up is e.g. at<br />

70 GWd/t and the fission gas release<br />

(FGR) due to normal operation is low<br />

(e.g. 10 %) due to not demanding<br />

normal operation, the pellet-cladding<br />

gap would be closed and simultaneously<br />

the hoop stress in cladding<br />

would be rather low, which is a consequence<br />

of cladding irradiation creep<br />

during normal operation (stretch-out<br />

operation).<br />

Under these conditions (70 GWd/t,<br />

10 % FGR, low cladding stress and<br />

gap closure at normal operation), the<br />

reactor shut down would consequently<br />

lead to an opening of the gap<br />

between fuel and cladding. This gap<br />

AMNT <strong>2018</strong><br />

TESPA-ROD Code Prediction of the Fuel Rod Behaviour During Long-term Storage ı Heinz G. Sonnenburg


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

AMNT <strong>2018</strong><br />

376<br />

| | Fig. 6.<br />

Comparison of internal gas pressure (upper vs mean).<br />

| | Fig. 7.<br />

Comparison of gap size between pellet and cladding (upper vs mean).<br />

| | Fig. 8.<br />

Comparison of cladding hoop stress (upper vs mean).<br />

| | Fig. 9.<br />

Comparison of helium gas release (upper vs mean).<br />

| | Fig. 10.<br />

Comparison of pellet outer diameter (upper vs mean).<br />

opening would be in the range of<br />

20 µm.<br />

The question is whether the gap<br />

gets smaller due to pellet swelling or<br />

will the gap get larger due to the<br />

internal gas pressure affected by<br />

helium gas release.<br />

Of course, various mechanisms<br />

have an impact on the gap size during<br />

long-term storage. The decay heat<br />

power drops and the fuel rod cools<br />

down, thus the internal pressure<br />

decreases and both cladding and pellet<br />

contract due to this cooldown. On the<br />

basis of these obvious mechanisms, it<br />

is easy to estimate the evolution of the<br />

cladding hoop stress because the stress<br />

level depends on the dropping internal<br />

gas pressure only.<br />

The additional consideration of the<br />

mechanisms (α-decay related fuel<br />

swelling and helium gas release) leads<br />

to a more complex situation. Especially,<br />

if the gap gets closed during the<br />

long-term storage, the evolution of<br />

the hoop stress depends no longer on<br />

the internal gas pressure.<br />

Figures 2 through 5 illustrate<br />

the TESPA-ROD prediction for the<br />

evolution of temperature, pressure,<br />

gap size and hoop stress for the periods<br />

of a) reactor shut down, b) wet- storage<br />

(4 years), c) drying procedure and<br />

d) subsequent dry- storage over several<br />

decades. The prediction makes use<br />

of the upper bounding values of the<br />

swelling correlation as defined by<br />

Raynaud [RAY 15].<br />

In particular, the result for cases<br />

with fission gas release (FGR) below<br />

25 %, gap closure (gap closure = gap<br />

size at 3 µm, which corresponds to<br />

roughness of clad and pellet) occurs a<br />

few years after beginning of wetstorage.<br />

For FGR at 40 %, no gap<br />

closure occurs and the hoop stress<br />

depends on the internal gas pressure<br />

only.<br />

Due to helium release from fuel,<br />

Figure 3 reveals an internal gas pressure<br />

minimum during the period of<br />

dry-storage. The occurrence of<br />

minimum depends on FGR. E.g. at<br />

10 % FGR the minimum occurs at<br />

about 60 years after start of drystorage.<br />

These results require further investigations.<br />

Therefore, the TESPA-ROD<br />

prediction using the pellet swelling<br />

model for both the upper bounding<br />

value and the mean value according<br />

to Raynaud [RAY 15] has been compared.<br />

As before, the pellet burn-up of<br />

70 GWd/t is at focus. The initial hoop<br />

stress level during normal operation<br />

(no stretch-out operation) is adjusted<br />

to 90 MPa which leads to a gap<br />

opening after reactor shut down to<br />

roughly 15 µm.<br />

The evolution of pressure, gap<br />

size, hoop stress, helium gas release<br />

and pellet outer diameter for both<br />

model predictions (upper vs mean) is<br />

shown in Figures 6 through 10.<br />

In these figures, fission gas release<br />

is set to 10 %. The temperature<br />

evolution is the same as shown in<br />

Figure 2 above.<br />

Figure 7 shows an early gap<br />

closure for the “upper” case and a late<br />

gap closure for the “mean” case after<br />

about 40 years. Consequently, the<br />

stress level increases at start of<br />

dry-storage for the “upper” case while<br />

this increase, although less pronounced,<br />

occurs after 40 years for<br />

the “mean” case.<br />

The significant increase of hoop<br />

stress after gap closure is a consequence<br />

of a shrinking cladding when<br />

it cools down and when its shrinkage<br />

gets blocked by the pellet. The pellet<br />

outer diameter evolution is shown<br />

in figure 10. This figure reveals<br />

an almost stagnant outer diameter<br />

evolution for the “mean” case. That is,<br />

AMNT <strong>2018</strong><br />

TESPA-ROD Code Prediction of the Fuel Rod Behaviour During Long-term Storage ı Heinz G. Sonnenburg


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

pellet shrinkage due to cooldown<br />

is roughly compensated by pellet<br />

swelling.<br />

Conclusion<br />

A comparative study with TESPA-ROD<br />

for long-term storage transient under<br />

boundary conditions described above<br />

illustrates that both pellet swelling<br />

models as defined by Raynaud (“upper”<br />

case and “mean” case) show up<br />

with gap closure during wet-storage.<br />

There is a significant delay in gap<br />

closure by 40 years when the pellet<br />

swelling model according Raynaud<br />

relies on “mean” values. Furthermore,<br />

the TESPA-ROD predictions reveal<br />

that the impact of pellet swelling on<br />

cladding’s hoop stress is dominating<br />

above the impact of helium gas release.<br />

Nevertheless, both effects need<br />

to be taken into account, because they<br />

affect the cladding’s hoop stresses.<br />

And cladding hoop stress is an important<br />

parameter for subsequent safety<br />

evaluation of the long-term storage<br />

fuel rod behaviour.<br />

Literature<br />

[SON 17] Sonnenburg, H.G.; Boldt, F.: Brennstabverhalten<br />

im Normalbetrieb,<br />

bei Störfällen und bei Langzeitlagerung.<br />

GRS-Bericht: GRS – 464,<br />

ISBN 978-3-9466<strong>07</strong>-47-2, August<br />

2017.<br />

[RAY 15] Raynaud, P.; Einziger, R.: Cladding<br />

stress during extended storage of<br />

high burnup spent nuclear fuel.<br />

Journal of Nuclear Materials 464,<br />

pp. 304–312, 2015.<br />

[WIS 14] Wiss, T.; et al.: Evolution of spent<br />

nuclear fuel in dry storage conditions<br />

for millennia and beyond.<br />

Journal of Nuclear Materials 451,<br />

pp. 198–206, 2014.<br />

Author<br />

Dr. Heinz G. Sonnenburg<br />

Gesellschaft für Anlagen- und<br />

Reaktorsicherheit (GRS) gGmbH<br />

Boltzmannstr. 14<br />

85748 Garching, Germany<br />

DATF EDITORIAL NOTES<br />

377<br />

Notes<br />

Global Outlook on Nuclear Energy<br />

From a global perspective, nuclear energy is a requested energy<br />

source. It covers about 11 % of the worldwide demand for electricity,<br />

ensured by 451 nuclear reactors with a net capacity of 395 GW e .<br />

Currently, there are 58 nuclear reactors with a net capacity of<br />

nearly 60 GW e under construction. In addition, more than<br />

150 reactors in about 25 countries are in the planning phase.<br />

Nuclear power plants under construction<br />

According to forecasts, the demand for nuclear energy will rise,<br />

especially in Asia and Central Europe as well as Eastern Europe.<br />

In its study “Sustainable Development Scenario”, the International<br />

Energy Agency projects a share of nuclear energy of 15 % in electricity<br />

generation worldwide until the year 2040.<br />

For further details<br />

please contact:<br />

Nicolas Wendler<br />

DAtF<br />

Robert-Koch-Platz 4<br />

10115 Berlin<br />

Germany<br />

E-mail: presse@<br />

kernenergie.de<br />

www.kernenergie.de<br />

Russia: 6<br />

USA: 2<br />

Brazil: 1<br />

Finland: 1 Belarus: 2<br />

China: 17<br />

Slovakia: 2 Ukraine: 2<br />

France: 1<br />

Pakistan: 2<br />

South Korea: 4<br />

Turkey: 1<br />

Japan: 2<br />

Taiwan, China: 2<br />

United Arab Emirates: 4<br />

Bangladesh: 1<br />

India: 7<br />

Argentina: 1<br />

Source: Weltenergierat Deutschland e. V.: Energie für Deutschland; IAEA; Date: 15.06.18<br />

DAtF Notes


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

378<br />

Neubauprojekte im Ausland – eine Herausforderung<br />

für die Regulierung<br />

Christian Raetzke<br />

SPOTLIGHT ON NUCLEAR LAW<br />

Weltweit sind gegenwärtig 57 Reaktoren in 16 Ländern in Bau; 154 Reaktoren befinden sich in 24 Ländern in – mehr<br />

oder weniger – konkreter Planung (Zahlen nach World Nuclear Association, www.world-nuclear.org). Ähnlich große<br />

Zahlen gab es ja schon einmal vor einigen Jahrzehnten, als das Gros der heute laufenden Anlagen errichtet wurde. Die<br />

Lage ist trotzdem heute anders, auch in juristischer und genehmigungstechnischer Hinsicht. Aufgrund der Vielfalt<br />

der für die Projekte in den verschiedenen Ländern verwendeten strukturellen Ansätze ist es zunehmend schwerer,<br />

bewährte Modelle von Regelsetzung, Genehmigung und Aufsicht (alles zusammen kann im Englischen ja mit dem<br />

Begriff „Regulation“ bezeichnet werden) weiterzuführen.<br />

Wie war es früher? Länder, die sich für die Kernenergie<br />

entschieden, bauten eine Infrastruktur auf; sie entwickelten<br />

eine eigene Technologie oder übernahmen sie<br />

von woanders (z.B. aus den USA), entwickelten sie dann<br />

aber oft eigenständig weiter (wie Deutschland und<br />

Frankreich). Erst wurden Versuchsreaktoren gebaut, dann<br />

kamen kleine kommerzielle Kernkraftwerke, dann große.<br />

Das nationale Atomrecht wuchs mit bzw. war immer einen<br />

Schritt voraus; dasselbe galt für die Behörden und ggf.<br />

Gutachterorganisationen, die sich in Größe und Erfahrung<br />

organisch entwickelten.<br />

Für viele Neubauländer trifft dieses Modell nicht mehr<br />

zu. China und Indien haben vielleicht einen grob vergleichbaren<br />

Weg gewählt; in anderen Ländern gibt es aber ganz<br />

andere Szenarien.<br />

Eines der interessantesten und bislang erfolgreichsten<br />

Beispiele liefern sicherlich die Vereinigten Arabischen<br />

Emirate mit dem Barakah-Projekt. Für viel Geld wurden<br />

Experten aus zahlreichen Ländern an den Golf geholt. Sie<br />

haben in kurzer Zeit Bemerkenswertes geleistet; allerdings<br />

fügten sich die unterschiedlichen Kulturen auch nicht<br />

immer bruchlos zusammen. Der Unterschied zu einem<br />

organisch gewachsenen Nuklearprogramm ist deutlich<br />

erkennbar bei der noch lückenhaft vorhandenen lokalen<br />

fachlichen Kompetenz, sowohl beim Betreiber als auch bei<br />

den Behörden.<br />

In rechtlicher Hinsicht wurde ein nationaler regulatorischer<br />

Rahmen geschaffen, der sich an den Leitlinien<br />

der Internationalen Atomenergieorganisation (IAEO) orientiert,<br />

aber auch Elemente aus Ländern übernimmt, die den<br />

jeweiligen Entwurfsverfassern (meist externe Berater)<br />

vertraut waren oder mit denen eine Zusammenarbeit<br />

besteht. Das hat, soweit man das überblicken kann, in den<br />

Emiraten gut funktioniert. Allgemein ergibt sich jedoch in<br />

solchen Konstellationen durchaus die Gefahr, dass IAEO-<br />

Texte mehr oder weniger mit „copy-and-paste“ übernommen<br />

und mit Versatzstücken aus den Gesetzen und<br />

Regelwerken anderer Länder ergänzt werden, ohne dass<br />

die Adressaten notwendigerweise die Texte vollständig<br />

durchdringen; auch besteht die Gefahr von Wider sprüchen<br />

und Redundanzen und einer mangelnden Ankopplung an<br />

das vorhandene nationale Recht. Und was ist, wenn die<br />

(juristischen) Berater wieder abziehen? Gibt es dann<br />

eine fundierte Kompetenz in Ministerien und Behörden,<br />

mit den Atomrechtsinstrumenten umzugehen? Die<br />

Ertüchtigung lokaler Kräfte ist auch hier ein langwieriger,<br />

aber unumgänglicher Prozess.<br />

Ein ganz anderes Modell kann am Beispiel des Projekts<br />

Akkuyu in der Türkei angesprochen werden. Hier bauen<br />

die Russen nicht nur das Kraftwerk, sondern sie finanzieren<br />

es auch (abgesichert durch einen Langzeit-<br />

Stromliefervertrag) und werden es auch betreiben. Man<br />

spricht hier von einem BOO(build-own-operate)-Modell.<br />

Das ist neuartig in der Kerntechnik und die Herausforderung<br />

ist nicht zu übersehen, dass das „Gastland“<br />

möglicherweise gar nicht so sehr daran interessiert ist,<br />

eine regulatorische Infrastruktur „in voller Schönheit“<br />

aufzubauen. In der Türkei stellt sich diese Frage letztlich<br />

nicht ernsthaft, da ja weitere Kernkraftwerke mit anderen<br />

Technologien und Betreibern geplant sind und daher ein<br />

vollständiger regulatorischer Rahmen unentbehrlich ist.<br />

Dessen Aufbau hat sich jedoch bislang als schleppend<br />

erwiesen. Und gerade für Akkuyu ist auch keinesfalls<br />

geklärt, was passiert, wenn die Genehmigungsbehörde<br />

z.B. die Erteilung einer Genehmigung verweigert, wenn<br />

aus ihrer Sicht die Voraussetzungen nicht vorliegen, die<br />

russischen Vertragspartner aber auf die zwischenstaatlichen<br />

Vereinbarungen pochen und Erfüllung verlangen.<br />

Solche Konstellationen werden noch deutlicher werden<br />

in Ländern, die nur ein Kernkraftwerk mit einem Lieferanten<br />

(der gleichzeitig oft das Geld mitbringt) planen.<br />

Eine ganz parallele Herausforderung stellt die<br />

möglicherweise bevorstehende internationale Verbreitung<br />

von SMR (Small Modular Reactors) dar. Die meisten<br />

Modelle und Konzepte hierfür haben den Ansatz<br />

gemeinsam, dass die Anlagen insgesamt oder in Modulen<br />

in Fabriken montiert und zum Einsatzort gebracht werden;<br />

idealerweise werden sie dort nur „hingestellt“ oder<br />

„ zusammengebaut“ und mit dem Stromnetz verbunden<br />

(„plug-and-play“) und womöglich samt abgebrannten<br />

Brennelementen irgendwann wieder abgeholt und ins<br />

Ursprungsland zurückgebracht. Ist es realistisch, vom<br />

„Gastland“ zu erwarten, dass es eigens hierfür eine<br />

vollständige regulatorische Infrastruktur mit eigener<br />

Expertise aufbaut? Andererseits kann ein Reaktor in einem<br />

Land ohne ein vollständiges Atomgesetz und eine fachlich<br />

gut besetzte Behörde wohl kaum betrieben werden. Hier<br />

sind Konflikte vorprogrammiert, aber auch hoffentlich<br />

gute Lösungen zu erwarten.<br />

Für die regulatorische Bewältigung dieser Herausforderungen<br />

gilt wie so oft: neue, komplexe Ent wicklungen<br />

fordern teils neue Lösungen. In der Kerntechnik aber gilt<br />

ebenso, dass man auf Bewährtem aufbauen muss und<br />

neue Lösungen – nicht nur technische, sondern auch<br />

regulatorische – nicht einfach mal „ausprobiert“ werden<br />

können, sondern der sehr sorgfältigen Rechtfertigung<br />

bedürfen, dass sie die erforderliche Sicherheit gewährleisten.<br />

Author<br />

Rechtsanwalt Dr. Christian Raetzke<br />

CONLAR Consulting on Nuclear Law and Regulation<br />

Beethovenstr. 19<br />

041<strong>07</strong> Leipzig, Germany<br />

Spotlight on Nuclear Law<br />

New Build Projects Abroad – A Challenge for Regulation ı Christian Raetzke


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

Safety Assessment of the<br />

Research Reactors FRM II and FR MZ<br />

After the Fukushima Event<br />

Axel Pichlmaier, Heiko Gerstenberg, Anton Kastenmüller, Christian Krokowski, Ulrich Lichnovsky,<br />

Roland Schätzlein, Michael Schmidt, Christopher Geppert, Klaus Eberhardt and Sergei Karpuk<br />

After the events at the Fukushima-I nuclear power plant (NPP) in 2011 the Reaktorsicherheitskommission (RSK) has<br />

carried out an overall assessment of the German nuclear fleet with respect to extreme (beyond design base) events. The<br />

RSK is an expert group of operators, technical support organizations (TSO) and scientists that consults the German<br />

Federal Ministry of the Environment (BMUB) in questions concerning reactor safety. This paper deals only with the<br />

research reactors (RR) FRM II (Garching) and FR MZ (Mainz). The findings of the RSK, its recommendations and their<br />

status of implementation will be presented.<br />

1 Introduction<br />

Upon request of the German Federal<br />

Government the FRM II, the FR MZ and<br />

the research reactor BER II at the<br />

Helmholtz Zentrum Berlin, like every<br />

other nuclear facility exceeding 50 kW<br />

thermal power, underwent a so-called<br />

stress test by the Reactor Safety<br />

Commission (RSK – Reaktor-Sicherheitskommission).<br />

Special emphasis<br />

was put on seismic events, flooding<br />

and other natural events, superposition<br />

of such events and manmade<br />

hazards like aircraft crashes. Additionally,<br />

independent event sequences<br />

relevant for research reactors have<br />

been postulated and analysed, even<br />

under aggravated conditions. Following<br />

these analyses the RSK has deduced<br />

recommendations with respect<br />

to the robustness of these facilities<br />

under such circumstances. The RSK<br />

findings summarized in this paper are<br />

based on [1] and [2].<br />

The following main aspects have<br />

been evaluated in detail for the three<br />

still operational German research<br />

reactors FRM II, FR MZ and BER II:<br />

vital safety functions of the RR and<br />

their behaviour at seismic events,<br />

flooding, other natural events, postulated<br />

events (like long lasting station<br />

blackout (SBO) with emergency<br />

power supply requirements, complete<br />

loss of ancillary cooling systems),<br />

robustness of emergency preparations<br />

for safety measures even under<br />

aggravated conditions due to external<br />

events; consequences of the release<br />

of burnable or toxic gas.<br />

This article focuses on the research<br />

reactors FRM II and FR MZ.<br />

The FRM II in Garching is a tank in<br />

pool reactor with 20 MW thermal<br />

power. A single fuel element, containing<br />

113 fuel plates with highly<br />

enriched Uranium, is cooled by light<br />

| | Fig. 1.<br />

Overall view of the FRM II (foreground), the neutron guide hall (middle) and the FRM I (”atomic egg”, now under decommissioning).<br />

water and placed in a moderator<br />

tank filled with heavy water. This<br />

setup yields an unperturbed thermal<br />

equivalent flux of 8 × 10 14 n/cm 2 /s<br />

over a cycle of 60 days. Generally, the<br />

reactor is operated for up to four<br />

cycles per year. The FRM II has<br />

reached criticality for the first time on<br />

March 2 nd , 2004. It is, therefore, the<br />

most modern research reactor in<br />

Germany.<br />

The main purpose of the FRM II<br />

is scientific research in beam tube<br />

experiments. However, it is also used<br />

for radioisotope production; it operates<br />

a silicon doping facility and an<br />

installation for medical treatment.<br />

Details can be found e. g. in [3]. A<br />

sketch of the overall FRM II design is<br />

given in Figure 1.<br />

The Forschungsreaktor TRIGA<br />

Mainz (FR MZ) at the Johannes<br />

Gutenberg University is a classical<br />

light water cooled swimming pool<br />

reactor with up to 100 kW thermal<br />

power in steady state operation mode.<br />

Furthermore, the FR MZ provides<br />

neutron pulses with energies of typically<br />

10 MJ and pulse lengths of<br />

30 ms. Currently the core is equipped<br />

with 76 fuel elements applying low<br />

enriched uranium in a zirconiumhydrid<br />

matrix. This fuel configuration<br />

has a negative temperature coefficient<br />

which provides an inherent safety<br />

mechanism: the moderation of neutrons<br />

is automatically suppressed with<br />

increasing temperature on a chemicalphysical<br />

basis. Thus the chain reaction<br />

is stopped, as soon as the fuel reaches<br />

temperature of about 150 °C or above.<br />

This mechanism neither requires the<br />

availability of personnel nor any<br />

infrastructure as electricity or further<br />

control systems and works faster than<br />

any engineered device. The FR MZ is<br />

one of the most intensively utilized<br />

TRIGA reactors worldwide with in<br />

379<br />

RESEARCH AND INNOVATION<br />

Research and Innovation<br />

Safety Assessment of the Research Reactors FRM II and FR MZ After the Fukushima Event<br />

ı Axel Pichlmaier, Heiko Gerstenberg, Anton Kastenmüller, Christian Krokowski, Ulrich Lichnovsky, Roland Schätzlein, Michael Schmidt, Christopher Geppert, Klaus Eberhardt and Sergei Karpuk


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

RESEARCH AND INNOVATION 380<br />

average 200 days of operation per<br />

annum. It has reached its first<br />

criticality on 3 rd of August 1965. The<br />

FR MZ has three main pillars of<br />

utilization: the most operation time is<br />

consumed for fundamental research<br />

such as nuclear spectroscopy and<br />

physics with ultra-cold neutrons.<br />

Besides, the reactor is deployed for<br />

applied sciences, e.g. for neutron<br />

activation analysis or radioactive<br />

tracer production. Apart from this<br />

pure scientific utilization, the FR MZ<br />

contributes to the education of<br />

students and maintenance of nuclear<br />

competence by various lectures, lab<br />

courses and one-week lasting rector<br />

operation courses.<br />

2 Procedure of the<br />

evaluation<br />

Objective was to evaluate whether the<br />

fundamental safety requirements<br />

• to control reactivity<br />

• to cool the fuel assemblies and<br />

• to limit the release of radioactive<br />

material<br />

could still be met under more difficult<br />

conditions than taken into account<br />

during the licensing process. For<br />

example, larger scale external<br />

destruction has been assumed and<br />

additional event sequences were<br />

postulated, most prominently the<br />

non-availability of the electric grid to<br />

supply safety-relevant installations.<br />

The conditions investigated were:<br />

• Seismic events<br />

• Flooding<br />

• Other naturally occurring adverse<br />

conditions<br />

• Postulated events like long lasting<br />

(> 2 h) station blackout<br />

• Robustness of preventive<br />

measures<br />

• Airplane crash<br />

• Release of gas (explosion, other<br />

effects of burnable gas, toxic gas)<br />

• Terrorist attacks<br />

The established site specific emergency<br />

measures, even under extreme<br />

conditions like core melt-down, have<br />

been re-evaluated in view of large<br />

scale destruction of the relevant<br />

infrastructure also in the surroundings<br />

of the affected RR.<br />

Because these evaluations are<br />

based on requirements for NPP, a<br />

graded approach has been taken<br />

bearing in mind that the risk associated<br />

with a RR is much lower than<br />

that of a NPP. This is due to the fact<br />

that radioactive inventory of a RR is<br />

typically several orders of magnitude<br />

smaller than that of a NPP and the<br />

processes involved are in general<br />

more benign.<br />

The RR operators followed two<br />

different systematic approaches of<br />

objective evidence. In most cases,<br />

distinct expertise has been produced<br />

to the individual conditions listed<br />

above. For the FR MZ several scenarios<br />

have been covered by a scenario,<br />

which is assumed as all-embracing<br />

event. This case is described by an<br />

airplane crash with maximal damage<br />

to the reactor as described in section<br />

3.2.8.<br />

Following the analysis in [3]<br />

several recommendations have been<br />

made by the RSK.<br />

3 Recommendations<br />

3.1 Generic recommendations<br />

for RR<br />

The RSK has recommended generic<br />

measures for the German RR:<br />

• Every RR should work out a site<br />

specific emergency concept for<br />

internal preventive and mitigating<br />

emergency measures based on the<br />

risk associated with the respective<br />

RR. This concept should be based<br />

upon recommendations given for<br />

NPP in [4].<br />

• Adverse environmental conditions<br />

should be taken into account when<br />

planning such measures.<br />

• Methods to cope with beyond<br />

design base LOCA-type accidents<br />

should be considered in the emergency<br />

planning.<br />

• For beyond design base scenarios<br />

when standard instrumentation to<br />

monitor reactor and radiation<br />

parameters might fail, sufficient<br />

backup is to be made available.<br />

• In the event of a core melt-down a<br />

concept to minimize the release of<br />

radioactivity should be available.<br />

3.2 Specific evaluation<br />

of the FRM II<br />

3.2.1 Specific evaluation<br />

Immediately following the events at<br />

the Fukushima NPP the evaluation of<br />

the FRM II by the RSK, based on<br />

information provided by the licensee<br />

and other available information, gave<br />

the following results [3]:<br />

3.2.2 Seismic events<br />

Cornerstone of the FRM II safety<br />

concept is the integrity of the reactor<br />

pool and related structures. The<br />

design requirement for the FRM II is<br />

robustness against an earthquake of<br />

magnitude VI ½ (MSK). Although<br />

strong hints towards the robustness<br />

of the FRM II in general and in particular<br />

the reactor pool even against a<br />

magnitude VIII quake existed, no conclusive<br />

prove could be provided by the<br />

licensee in 2012. The RSK therefore<br />

concluded that further investigations<br />

should be carried out and be evaluated<br />

by the TSO.<br />

The FRM II immediately started<br />

calculations on the robustness of the<br />

reactor pool and related structures.<br />

The calculations were double-checked<br />

by the TSO. Overall it could be proven<br />

that even a seismic event of the<br />

magnitude VIII ½ would not damage<br />

the integrity of the reactor pool and<br />

consequently no water (for cooling/<br />

shielding) would be lost. This was<br />

completed already before the 2017<br />

RSK assessment.<br />

3.2.3 Flooding<br />

The FRM II is designed to withstand<br />

a flood that is to occur statistically<br />

every 10, 000 years. Even more severe<br />

flooding, however, would not do any<br />

damage that might endanger the vital<br />

safety functions of the FRM II. Therefore<br />

the RSK gave the FRM II the best<br />

grade (“level 3”) regarding flooding<br />

and did not request any further measures.<br />

3.2.4 Other naturally occurring<br />

adverse conditions<br />

No such conditions could be identified<br />

that would require further action.<br />

3.2.5 Postulated events<br />

The only relevant event is the station<br />

black out (SBO). Because of the<br />

diesel/battery buffering the safety<br />

functions in case of SBO are guaranteed<br />

for at least two hours. Additionally,<br />

in the framework of the<br />

licensing process it could be shown<br />

that even a total loss of all active core<br />

cooling components would not lead to<br />

fuel damage. According to the RSK the<br />

required criteria are met, no further<br />

improvement is necessary.<br />

3.2.6 Robustness of preventive<br />

measures<br />

The robustness of a suite of preventive<br />

measures has been analysed by the<br />

RSK:<br />

• Measures against fire: the RSK<br />

concludes that fire cannot endanger<br />

the vital safety functions of<br />

the FRM II.<br />

• Measures against blocked cooling<br />

channels (beyond design base):<br />

these are mainly based on passive<br />

measures like several grids to<br />

stop migration of small particles<br />

in the primary cooling loop. Even<br />

a failure of these preventive<br />

measures would not lead to<br />

Research and Innovation<br />

Safety Assessment of the Research Reactors FRM II and FR MZ After the Fukushima Event<br />

ı Axel Pichlmaier, Heiko Gerstenberg, Anton Kastenmüller, Christian Krokowski, Ulrich Lichnovsky, Roland Schätzlein, Michael Schmidt, Christopher Geppert, Klaus Eberhardt and Sergei Karpuk


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

radiologically required evacuation<br />

of the general public in the surroundings<br />

of the FRM II.<br />

• Measures against loss of the integrity<br />

of the reactor pool leading to<br />

loss of pool water: the concept of –<br />

at least – double barriers has been<br />

used throughout. Additionally,<br />

heavy lifts in the vicinity of the<br />

pool or delicate installations like<br />

the cold source with its D 2 contents<br />

are only allowed after additional<br />

measures are in place (e. g. the<br />

reactor is shut down and the D 2<br />

removed).<br />

• Internal flooding: water is drained<br />

in such a way that safety relevant<br />

functions cannot be affected. The<br />

RSK considers the required criteria<br />

as more than met.<br />

• Measures against improper reactivity<br />

changes: the overall reactivity<br />

coefficients of the FRM II are<br />

negative with increase in temperature.<br />

A postulated release of 3 $<br />

reactivity has been investigated in<br />

the process of the FRM II licensing.<br />

No need for additional measures<br />

could be deduced.<br />

3.2.7 Aggravated boundary<br />

conditions<br />

Several emergency measures (draining<br />

of the D 2 O moderator, sealing<br />

of the reactor building ventilation<br />

systems against the environment,<br />

measures to maintain the pool- waterlevel<br />

and emergency fuel unloading,<br />

installation of a backup 400 V electric<br />

power supply) are described in the<br />

FRM II operating manual (BHB).<br />

There is an emergency control room<br />

and sufficient room for emergency<br />

first responders. The functioning of<br />

communication lines under such<br />

conditions could not be verified by<br />

the RSK. The existing instrumentation<br />

is robust against seismic events and<br />

airplane crashes. Some measures,<br />

however, require access to the reactor<br />

hall. The RSK recommends implementing<br />

measures that do not require<br />

such access since it might no longer be<br />

possible under some circumstances.<br />

Additional emergency drills and the<br />

availability of the required personnel<br />

in case of such events should be<br />

verified.<br />

3.2.8 Airplane crash<br />

No additional measures are required<br />

to withstand the impact of a military<br />

or a large civilian aircraft.<br />

3.2.9 Release of gas<br />

The effects of explosions are covered<br />

by the robustness of the FRM II<br />

towards seismic events and the crash<br />

of even a large aircraft.<br />

In the vicinity of the FRM II no<br />

significant supply of burnable gas<br />

exists, therefore no additional measures<br />

are required (but could be<br />

handled regardless by the design of<br />

the FRM II site).<br />

Toxic gas might affect the availability<br />

of personnel but not compromise<br />

the vital safety functions of the<br />

FRM II.<br />

3.3 Specific evaluation<br />

of the FR MZ<br />

3.3.1 Seismic events<br />

For the FR MZ no detailed seismic<br />

studies, investigating the influence of<br />

the integrity of the reactor under<br />

various earthquakes levels, have been<br />

initiated. Instead, the damage impact<br />

and radioactive release initiated by<br />

the airplane crash scenario (described<br />

in section 3.3.4) covers the consequences<br />

triggered by an earthquake.<br />

The RSK followed the evaluation of<br />

the local authorities (Ministerium für<br />

Umwelt, Energie, Ernährung und<br />

Forsten Rheinland-Pfalz MUEEF) of the<br />

FR MZ and accepted the robustness<br />

level 2 as fulfilled.<br />

3.3.2 Flooding and other<br />

naturally occurring adverse<br />

conditions<br />

Several assessments for rain and<br />

snow, based on long-term weather<br />

data provided by the meteorological<br />

institute of the Johannes Gutenberg<br />

University in Mainz, have been taken<br />

into account. In addition, static investigations<br />

against the highest storm<br />

level experienced in the last decades<br />

in the region have been conducted.<br />

From that no unexpected naturally<br />

occurring conditions could be identified<br />

that would require further action.<br />

The MUEEF accepts for these scenarios<br />

a robustness level of the highest grade<br />

(level 3).<br />

3.3.3 Release of gas and<br />

protection against<br />

explosions<br />

The effects of gas-induced explosions<br />

are covered by the scenario of an<br />

airplane crash. A formerly existing<br />

nearby underground gas pipe is<br />

shutdown, so that within 350 m radius<br />

of the reactor hall, no significant<br />

supply of burnable gas exists. The<br />

handling of burnable gas for shortterm<br />

scientific purposes is strictly<br />

regulated at the FR MZ. No burnable<br />

or flammable gas bottles are allowed<br />

to be stored in the reactor hall. Neither<br />

burnable gas nor toxic gas compromise<br />

the inherent safety mechanism<br />

of the FR MZ. As a result, no additional<br />

measures other than the standard<br />

safety provisions for workers in the reactor<br />

hall are required.<br />

The emergency diesel generator of<br />

the FR MZ has an attached 600 L diesel<br />

reservoir. The reactor building is<br />

shielded against the generator container<br />

by the larger cooling tower<br />

installation.<br />

As a result, the RSK assesses this<br />

scenario with a degree of protection<br />

level 3 and has no further demand for<br />

continuative investigations.<br />

3.3.4 Airplane crash<br />

The impact and consequences of an<br />

airplane crash on the FR MZ is the allembracing<br />

damage scenario for the<br />

FR MZ. In the scenario, an airplane<br />

crashes on the reactor hall and<br />

destroys the roof of the hall. In a first<br />

phase debris of the plane destroys the<br />

reactor vessel in such way, that all<br />

water is instantaneously and completely<br />

leaking out of the reactor pool<br />

and furthermore decapitating every<br />

single fuel element. Afterwards the<br />

reactor vessel is sealed in such a way,<br />

that airplane fuel can accumulate<br />

under the now dry reactor core and<br />

start to burn, heating the fuel elements<br />

to a temperature of 1,100 °C. Calculations<br />

of the TSO (TÜV Rheinland)<br />

study the emission of radioactive<br />

isotopes through the open reactor roof<br />

including the scenario with and without<br />

rain. Taking into account the<br />

emergency reference level of the<br />

German Commission of Radiological<br />

Protection (Strahlenschutzkomission),<br />

the radiological levels reached remain<br />

below 30 % of the permissible values.<br />

Therefore, except for the typical ban<br />

area inherent to a conventional airplane<br />

crash, no further immediate<br />

measures have to be initiated.<br />

The MUEEF sees the degree of<br />

protection level 2, the highest possible<br />

scale for this scenario, as fulfilled. The<br />

RSK confirms this assessment.<br />

3.3.5 Robustness of preventive<br />

measures<br />

The FR MZ has four radial beam tubes,<br />

which provide access for experiments,<br />

which are placed close to the reactor<br />

core. The airplane crash scenario<br />

covers a sudden loss of beam tube integrity<br />

and subsequent loss of water<br />

inside the core. Furthermore the influence<br />

of an explosion inside the beam<br />

tubes, e. g. through the D 2 and H 2 gas<br />

applied for ultra-cold neutron experiments<br />

have been evaluated by an<br />

RESEARCH AND INNOVATION 381<br />

Research and Innovation<br />

Safety Assessment of the Research Reactors FRM II and FR MZ After the Fukushima Event<br />

ı Axel Pichlmaier, Heiko Gerstenberg, Anton Kastenmüller, Christian Krokowski, Ulrich Lichnovsky, Roland Schätzlein, Michael Schmidt, Christopher Geppert, Klaus Eberhardt and Sergei Karpuk


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

RESEARCH AND INNOVATION 382<br />

external TSO. Due to a double-barrier<br />

concept of the experiments, the TSO<br />

verifies that even in case of D 2 or H 2<br />

ignition, neither the beam tube<br />

integrity is affected nor any damage to<br />

the core is expected.<br />

In the assessment of the MUEEF,<br />

the FR MZ fulfils a protection level 3<br />

and the RSK sees no further need for<br />

robustness analysis on this subject.<br />

In case of a SBO the FR MZ is<br />

equipped with an emergency-power<br />

supply which consists of a combination<br />

of battery buffer, which drives all<br />

necessary reactor control units and<br />

radiation surveillance systems for at<br />

least one hour, and an emergency<br />

diesel generator which starts within a<br />

few minutes after the power blackout.<br />

With a permanent diesel reservoir of<br />

about 600 L, the diesel generator<br />

supplies electric power to the FR MZ<br />

infrastructure for up to 40 hours.<br />

4 Evaluation of the<br />

measures<br />

As a follow-up, the points mentioned<br />

above have been re-evaluated by the<br />

RSK in 2017 [2]. The conclusions can<br />

be summarized as follows:<br />

4.1 Evaluation of the measures<br />

taken by FRM II until 2017<br />

4.1.1 Emergency drills<br />

The FRM II has significantly revised<br />

its emergency concept and mostly<br />

implemented the RSK recommendations.<br />

Some recommendations have<br />

not been addressed in full detail yet:<br />

The RSK recommends that the FRM II<br />

should enlarge its concept of emergency<br />

drills. The internal emergency<br />

organisation as a whole should train at<br />

least once yearly, the relevant external<br />

authorities should be included in these<br />

exercises at least every five years.<br />

At the time of writing, however,<br />

the internal emergency exercise concept<br />

is fully functional and even an<br />

external exercise has been done.<br />

These measures, though, have not<br />

been evaluated by the RSK yet.<br />

4.1.2 Emergency measures<br />

to supply water to the<br />

reactor pool<br />

The RSK recommends having a system<br />

in place to supply water to the reactor<br />

pool in case of a failure of the relevant<br />

barriers against loss of pool water.<br />

While this recommendation has not<br />

been addressed explicitly by the<br />

FRM II yet, at FRM II already now with<br />

existing measures or minor changes it<br />

would be possible to supply water to<br />

the pool in case of emergency without<br />

access to the reactor hall. Since no<br />

explicit evidence has been provided by<br />

FRM II yet there is also no evaluation<br />

of the RSK.<br />

4.1.3 Robustness of the<br />

emergency data<br />

acquisition systems<br />

The RSK recommends an analysis on<br />

the availability of the relevant DAQ<br />

systems in case of beyond design base<br />

accidents, since emergency measures<br />

require reliable information e. g. on<br />

the pool water level, temperature,<br />

neutron flux and radiation levels.<br />

While such information – especially<br />

pool level and temperature – can be<br />

acquired easily by rather primitive<br />

means the recommended prove has<br />

not yet been provided by the FRM II.<br />

4.1.4 Emergency communication<br />

The FRM II is equipped with several<br />

independent and diverse communication<br />

channels (e. g. landlines and<br />

GSM mobile phones). On top of that,<br />

the RSK recommends the FRM II<br />

emergency communication should<br />

have priority over other’s communication<br />

needs. This recommendation has<br />

not yet been implemented. However,<br />

the relevant communication channels<br />

(e. g. land line telephone service)<br />

have large reserves and therefore the<br />

safety gain through priority might be<br />

negligible.<br />

4.1.5 Seismic robustness/<br />

implementation of an<br />

additional system to<br />

maintain long term<br />

undercriticality<br />

Additional very detailed and thorough<br />

analysis confirmed that the earlier<br />

only assumed robustness of the<br />

reactor building and the reactor pool<br />

even towards magnitude VIII ½<br />

(MSK) earth quakes. This has been<br />

confirmed by the TSO.<br />

Such a beyond design base event<br />

might impede the proper functioning<br />

of the primary (control rod) and<br />

secondary (four out of five shut down<br />

rods) shut down system. Therefore the<br />

implementation of an additional<br />

system to maintain long term undercriticality<br />

is recommended by the RSK.<br />

The FRM II is exploring several<br />

options to implement such a system.<br />

Ideas include diluting the D 2 O with<br />

H 2 O in the moderator or adding Boron<br />

to the primary cooling loop or the D 2 O<br />

moderator. Calculations show that<br />

even small amounts of such impurities<br />

would already lead to the required<br />

long term undercriticality. No final<br />

design has been drawn up yet.<br />

4.2 Measures taken by the FR<br />

MZ resulting from the RSK<br />

analysis<br />

4.2.1 Emergency communication<br />

Although the FR MZ infrastructure<br />

contains several communication systems,<br />

the RSK suggests, similar to<br />

section 4.1.4 for the FRM II, the<br />

prioritization of the mobile phones in<br />

the public network. The request to the<br />

telephone network provider is under<br />

progress.<br />

4.2.2 Emergency drills<br />

The RSK recognizes that the emergency<br />

management of the FR MZ is<br />

upgraded by creating two new safetydedicated<br />

reactor staff positions. It<br />

furthermore appreciates the idea of<br />

triannual exercises with external<br />

forces and under the involvement of<br />

the MUEEF. In addition to that, the<br />

RSK request to implement annual<br />

internal drills, including the complete<br />

reactor crisis management, into the<br />

FR MZ emergency drill concept.<br />

Preparations for the establishment of<br />

the triannual exercises are currently<br />

ongoing.<br />

4.2.3 Earthquake<br />

Based on the all-embracing event of<br />

an airplane crash, the RSK confirms<br />

the MUEEF’s evaluation to robustness<br />

level 2. Additionally the RSK suggests<br />

describing measures how to shut<br />

down the reactor manually following<br />

an earthquake with a subsequent<br />

malfunction of the control rods. This<br />

description should be integrated in<br />

the reactor operation regulations.<br />

5 Conclusion<br />

After the events in the Fukushima-I<br />

NPP the RSK has analysed the robustness<br />

of the German nuclear reactors in<br />

general and also the FRM II and the<br />

FR MZ with respect to beyond design<br />

base accidents. Already the analysis in<br />

2012 [3] had given a positive result<br />

and only few recommendations to<br />

even further improve the overall<br />

safety of the research reactors in<br />

Germany were presented.<br />

In its 2017 re-analysis [1] the RSK<br />

confirmed that most recommendations<br />

were met by the FRM II. The<br />

FRM II is working to answer the last<br />

open points. For the FR MZ the RSK<br />

confirmed the Mainz MUEEF’s assessment<br />

of the TRIGA research reactor.<br />

No open questions remained from the<br />

2017 assessment of the FR MZ. Both<br />

facilities are working on reaching full<br />

compliance with all the RSK recommendations<br />

in the near future.<br />

Research and Innovation<br />

Safety Assessment of the Research Reactors FRM II and FR MZ After the Fukushima Event<br />

ı Axel Pichlmaier, Heiko Gerstenberg, Anton Kastenmüller, Christian Krokowski, Ulrich Lichnovsky, Roland Schätzlein, Michael Schmidt, Christopher Geppert, Klaus Eberhardt and Sergei Karpuk


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

References<br />

[1] RSK-Stellungnahme, 492. Sitzung der<br />

Reaktor-Sicherheitskommission (RSK)<br />

am 22.03.2017.<br />

[2] Stellungnahme der RSK „Anlagenspezifische<br />

Sicherheitsüberprüfung<br />

(RSK-SÜ) deutscher Forschungsreaktoren<br />

unter Berücksichtigung der<br />

Ereignisse in Fukushima-I (Japan)“,<br />

Anlage 1 zum Ergebnisprotokoll der<br />

447. Sitzung der Reaktor-Sicherheitskommission<br />

(RSK) am 03.05.2012.<br />

[3] FRM II description, http://www.frm2.<br />

tum.de/en/the-neutron-source/.<br />

[4] „Rahmenempfehlungen für die<br />

Planungen von Notfallschutzmaßnahmen<br />

durch die Betreiber von<br />

Kernkraftwerken“, Empfehlungen der<br />

Strahlenschutzkommission und der<br />

Reaktorsicherheitskommission,<br />

gebilligt in der 244. Sitzung der<br />

Strahlenschutz-kommission am<br />

03. November 2010, zum Zeitpunkt der<br />

RSK-SÜ-FR gültig, mittlerweile abgelöst<br />

durch [5].<br />

[5] „Rahmenempfehlungen für die<br />

Planung von Notfallschutzmaßnahmen<br />

durch Betreiber von Kernkraftwerken“,<br />

Empfehlung der Strahlenschutzkommission<br />

und der Reaktor-<br />

Sicherheitskommission, verabschiedet<br />

in der 242. Sitzung der Strahlenschutzkommission<br />

am 01./02. Juli 2010, gebilligt<br />

in der 244. Sitzung der Strahlenschutz-kommission<br />

am 03. November<br />

2010, verabschiedet in der 429. Sitzung<br />

der Reaktor-Sicherheitskommission am<br />

14. Oktober 2010. Ergänzung verabschiedet<br />

in der 468. Sitzung der RSK<br />

am 04.September 2014 und in der 271.<br />

Sitzung der SSK am 21.Oktober 2014.<br />

Abbreviations<br />

BMUB<br />

DAQ<br />

KSB<br />

LOCA<br />

MSK<br />

MUEEF<br />

NPP<br />

OBe<br />

RSK<br />

RR<br />

SBO<br />

TSO<br />

Authors<br />

German Federal Ministry of the<br />

Environment<br />

data acquisition<br />

Kerntechnischer Sicherheitsbeauftragter<br />

(nuclear safety<br />

officer)<br />

loss of coolant accident<br />

Medwedew-Sponheuer-Karnik-<br />

Scale for the magnitude of<br />

earthquakes (IXII)<br />

Ministerium für Umwelt, Energie,<br />

Ernährung und Forsten<br />

Rheinland-Pfalz<br />

Nuclear power plant<br />

Objektsicherungsbeauftragter<br />

(security officer)<br />

Reaktorsicherheitskommission<br />

(Reactor safety commission that<br />

advises the BMUB)<br />

Research Reactor<br />

Station Black Out<br />

Technical Support Organisation<br />

Dr. Axel Pichlmaier<br />

Fachbereichsleiter Reaktorbetrieb<br />

FRM II<br />

Dr. Heiko Gerstenberg<br />

stellv. Technischer Direktor und<br />

Fachbereichsleiter Bestrahlung und<br />

Quellen FRM II<br />

Dr. Anton Kastenmüller<br />

Technischer Direktor FRM II<br />

Dr. Christian Krokowski<br />

Fachbereichsleiter Reaktorweiterentwicklung<br />

FRM II<br />

M. Sc. Ulrich Lichnovsky<br />

Fachbereichsleiter Stilllegung und Rückbau<br />

FRM(alt)<br />

Dipl. Phys. Roland Schätzlein<br />

stellv. Technischer Direktor und Fachbereichsleiter<br />

Elektro- und Leittechnik FRM II<br />

Dipl. Ing. Michael Schmidt<br />

Fachbereichsleiter Reaktor überwachung FRM<br />

II<br />

FRM II, Forschungs-Neutronen quelle Heinz<br />

Maier-Leibnitz<br />

Technische Universität München<br />

Lichtenbergstr. 1<br />

85748 Garching, Germany<br />

Dr. Christopher Geppert<br />

Betriebsleitung FR MZ<br />

Dr. Klaus Eberhardt<br />

Betriebsleitung FR MZ<br />

Dr. Sergei Karpuk<br />

KSB und OBe FR MZ<br />

FR MZ, Forschungsreaktor TRIGA Mainz<br />

Fritz-Straßmann-Weg 2<br />

55128 Mainz; Germany<br />

RESEARCH AND INNOVATION 383<br />

Decommissioning of Germany’s<br />

First Nuclear Reactor<br />

Ulrich Lichnovsky, Julia Rehberger, Axel Pichlmaier and Anton Kastenmüller<br />

FRM started operating in 1957 as the first nuclear reactor in Germany. Reactor operation ended in 2000. Licensing<br />

procedures for the deconstruction and dismantling of the reactor started in 1998. In 2014 the Technical University of<br />

Munich (TUM) was granted the license to decommission the reactor.<br />

In this article we describe our<br />

(long) way to the license for dismantling<br />

of the reactor and give a short<br />

overview of the current state of the<br />

decommissioning project.<br />

We present the results of the (pre-)<br />

licensing stage: disposal of spent<br />

nuclear fuel (SNF) and preparation of<br />

the safety report containing details<br />

on fire protection, radiological characterization<br />

(neutron activation and<br />

contamination), waste management<br />

and safety analysis.<br />

With regard to the current state of<br />

the project we will discuss: clearance<br />

of material and current obstacles.<br />

1 Introduction 1<br />

1.1 Construction, licensing and<br />

commissioning<br />

In the 1950s the Bavarian government<br />

gave impulses for the transformation<br />

of Bavaria from an agricultural to an<br />

industrial country. The worldwide<br />

euphoria towards the peaceful use of<br />

nuclear energy was shared by the<br />

leading political parties in Germany,<br />

left-wing as well as right-wing parties.<br />

It took an incredibly short time –<br />

compared to today’s time consuming<br />

licensing processes – from the political<br />

decision to build a nuclear research<br />

reactor near Munich to the first<br />

criticality of the research reactor<br />

Forschungsreaktor München (FRM):<br />

In 1956 the Bavarian government<br />

decided to buy a research reactor. A<br />

few days after the political decision,<br />

Professor Maier-Leibnitz (Physics Depart<br />

ment of the Technical University of<br />

Munich) was sent to the USA with the<br />

task of buying a nuclear reactor.<br />

When the reactor was bought from<br />

AMF, there was no federal legislation<br />

regarding nuclear installations in<br />

Germany. The construction of the<br />

FRM started in 1956, without the<br />

legislation that would be necessary for<br />

1) The main contents<br />

of the introduction<br />

were collected from<br />

the articles in [1].<br />

Research and Innovation<br />

Decommissioning of Germany’s First Nuclear Reactor ı Ulrich Lichnovsky, Julia Rehberger, Axel Pichlmaier and Anton Kastenmüller


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

RESEARCH AND INNOVATION 384<br />

| | Fig. 1.<br />

Reactor pool of the FRM.<br />

reactor operation. With the approval<br />

of the Bavarian state government the<br />

construction of the FRM started – still<br />

without any federal nuclear law. In<br />

1957 the Bavarian government passed<br />

a nuclear law of their own, before the<br />

federal government had an appropriate<br />

nuclear law for the Federal<br />

Republic of Germany. The Bavarian<br />

law was the basis for the license of<br />

Germany’s first nuclear reactor.<br />

In October 1957 first criticality was<br />

achieved, thus making the FRM the<br />

first nuclear installation in Germany.<br />

Operation of FRM laid the foundation<br />

for many decades of successful<br />

and peacefull nuclear research and<br />

industry in Germany.<br />

1.2 Technical overview<br />

The FRM was designed as neutron<br />

source for science and material test<br />

reactor.<br />

It was a light-water-moderated<br />

open pool reactor (see Figure 1).<br />

From 1957 to 1960 the fuel was<br />

20% enriched uranium (U-Al-alloy).<br />

With a reactor power of 1 MW a maximal<br />

neutron flux of 6.6 * 10 12 n/cm 2 /s<br />

was achieved.<br />

In order to further increase neutron<br />

flux, the use of 90 % enriched<br />

uranium (HEU) started in 1960. Six<br />

years later, in 1966, the thermal<br />

reactor power was increased to<br />

2.5 MW and in 1968 to 4 MW. For<br />

further increase of the neutron flux in<br />

1982 the core design was completely<br />

refurbished: the operating team<br />

added Beryllium and Graphite reflector<br />

elements and was able to increase<br />

the neutron flux to 8 * 10 13 n/cm 2 /s.<br />

In order to keep up with the scientific<br />

demands other facilities were<br />

added to the FRM. In 1962 a system to<br />

irradiate samples near liquid Helium<br />

temperature (TTB) was installed, with<br />

the nozzle of the irradiation facility<br />

inside the reactor core. Additionally<br />

in 1995 a cold neutron source was<br />

installed.<br />

A pneumatic tube system made it<br />

possible to irradiate and change<br />

scientific probes while the reactor is<br />

running.<br />

The reactor pool is situated inside<br />

the reactor hall. The reactor hall is a<br />

spheroid with 30 m height and 30 m<br />

diameter – giving the FRM its characteristic<br />

egg-shaped form (Atom-Ei; see<br />

Figure 2). The open reactor pool is<br />

built of 450 m 3 baryte and normal<br />

concrete containing 55 metric tonnes<br />

of steel as reinforcement. The reactor<br />

pool holds 270 m 3 of deionized light<br />

water as moderator and primary<br />

coolant.<br />

1.3 Scientific highlights<br />

The FRM always was a reactor for<br />

scientific purposes and the scientific<br />

use of neutrons. Power generation<br />

was not of interest.<br />

The main fields of science at<br />

FRM were: nuclear physics, neutron<br />

physics, solid-state physics, irradiation<br />

techniques and radiochemistry.<br />

Ultracold neutrons (UCN) were first<br />

detected at the FRM by A. Steyerl et al.<br />

[2].<br />

Many techniques that are still used<br />

today at neutron source type research<br />

reactors were developed or greatly<br />

refined at FRM including:<br />

spectroscopy, mass spectroscopy<br />

of fission products, interferometry,<br />

neutron guides, small angle scattering,<br />

fast pneumatic tube system and<br />

gravity refractometry.<br />

1.4 End of operation<br />

When it was decided to build a new<br />

high flux neutron source next to FRM,<br />

it was also decided to decommission<br />

the old reactor. Licensing for decommissioning<br />

started in 1998.<br />

The last reactor operation took<br />

place in the year 2000. Since 2002<br />

FRM has had no fuel elements on site.<br />

The license for decommissioning<br />

was granted in 2014.<br />

2 Licensing for<br />

decommissioning<br />

2.1 General legislation<br />

In order to decommission a nuclear<br />

installation in Germany the licensee of<br />

the running installation has to request<br />

a license for decommissioning according<br />

to § 7 of the German Atomic<br />

Energy Act AtG.<br />

The licensee’s request has to<br />

contain a detailed safety report. The<br />

safety report has to cover the following<br />

items:<br />

• geographic location<br />

• neighbouring infrastructure (residential,<br />

industrial and agricultural<br />

areas)<br />

• technical description of the nuclear<br />

installation<br />

• description of the planned procedure<br />

for practical decommissioning<br />

• radiation safety<br />

• waste management<br />

• fire protection<br />

• possible incidents/accidents<br />

• personnel organisation of the<br />

operator<br />

After receiving the safety report, the<br />

licensing authority asks a technical<br />

safety organisation (TSO) for their<br />

expert opinion regarding the safety<br />

report and its contents. The TSO<br />

writes a final report commenting on<br />

each point of the safety report.<br />

The licensing authority grants the<br />

license for decommissioning, if it is<br />

convinced that the decommissioning<br />

can be done safely for people and the<br />

environment.<br />

2.2 Licensing at FRM<br />

FRM requested a license for decommissioning<br />

in 1998. A new environmental<br />

impact assessment (Umweltverträglichkeitsprüfung<br />

UVP) with<br />

participation of the public was not<br />

required due to the fact that only<br />

already licensed values were re quested<br />

for permissible emissions ( only 1 E6<br />

Bq aerosol-bound activity per year).<br />

Shortly after the first request, all<br />

licensing efforts for decommissioning<br />

were put on halt, as all resources from<br />

FRM, authority and TSO were needed<br />

for the licensing and commissioning<br />

of the new high flux neutron source<br />

FRM II.<br />

Finally, in 2010 FRM negotiated a<br />

contract with a nuclear consulting<br />

company, to get the licensing done. In<br />

this process the contractor prepared<br />

all the necessary documents and<br />

discussed them with the operator, the<br />

TSO and the licensing authority – the<br />

Bavarian state ministry of the environment,<br />

health and consumer protection<br />

(StMUV).<br />

The TSO and the licensing authority<br />

were involved during the whole<br />

process of preparing the safety report.<br />

Both, the licensing authority and the<br />

TSO, already knew the FRM form the<br />

operating time in great detail, which<br />

facilitated the unavoidable technical<br />

discussions.<br />

Research and Innovation<br />

Decommissioning of Germany’s First Nuclear Reactor ı Ulrich Lichnovsky, Julia Rehberger, Axel Pichlmaier and Anton Kastenmüller


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

| | Fig. 2.<br />

Historic picture of the FRM site.<br />

Year<br />

Activities towards license for decommissioning<br />

1957-2000 Reactor operation of FRM under operating license<br />

1998 Operator (FRM) requests license for decommissioning<br />

1998-2010 FRM, TSO and authority are busy with licensing and commissioning<br />

of the new high flux research reactor FRM II<br />

2010-2012 FRM working with a contractor to finalize the licensing documents<br />

2010-2014 FRM, contractor, TSO and authority discuss details of the licensing<br />

documents and prepare additional documents<br />

2014 License for decommissioning is granted by the authority<br />

| | Tab. 1.<br />

FRM’s way from reactor operation to decommissioning.<br />

After the submission of the safety<br />

report by FRM, the TSO reviewed the<br />

report and wrote a detailed report<br />

themselves. The overall result was<br />

positive. Still, the TSO requested some<br />

conditions to be met before the start of<br />

dismantling.<br />

The licensing authority granted<br />

the license for decommissioning in<br />

2014 [3]. Basis of the license are:<br />

• the safety report presented by FRM<br />

• the technical report presented by<br />

the TSO (conditions, written down<br />

by the TSO, did not necessarily become<br />

requirements of the licensing<br />

authority)<br />

• federal and national legislation<br />

• additional national regulations<br />

The whole process from reactor operation<br />

to license for decommissioning<br />

is summed up in Table 1.<br />

3 Description of the<br />

(pre-)licensing stage<br />

This chapter describes the main<br />

challenges during the pre-licensing<br />

stage: the disposal of spent nuclear<br />

fuel (chapter 3.1) and writing up the<br />

safety report (chapters 3.2 to 3.5).<br />

The parts of the safety report (see<br />

chapter 2.1), that are of general<br />

interest, are described in detail.<br />

Figure 2 shows the “atomic egg” –<br />

with circumferential rooms – from<br />

the outside.<br />

The licensed area of the FRM<br />

consists of the reactor hall – containing<br />

the open pool (see Figure 1)<br />

– and additional rooms around the<br />

“atomic egg”. The adjacent rooms<br />

contain storage rooms, laboratories<br />

and rooms for technical installations<br />

such as ventilation system and waste<br />

water treatment.<br />

3.1 Disposal of spent nuclear<br />

fuel<br />

The main part of the spent nuclear<br />

fuel from FRM was highly enriched<br />

uranium as described above. Supporting<br />

the international effort of minimizing<br />

civilian HEU stockpiles, the<br />

FRM participated in the repatriation<br />

of the spent nuclear fuel back to the<br />

United States in 2002. The packaging<br />

of the SNF took place still under the<br />

operating license.<br />

This step reduced the radioactive<br />

inventory at the FRM drastically. The<br />

typical protection objectives of a<br />

nuclear facility: control of reactivity<br />

and heat removal, are not necessary<br />

after the removal of all the nuclear<br />

fuel from the FRM reactor hall.<br />

3.2 Fire protection<br />

Fire protection is gaining more and<br />

more focus in international and German<br />

regulations. This is especially the<br />

case after tragic accidents in industrial<br />

[4] and private building complexes.<br />

The German Nuclear Safety Standards<br />

Commission (KTA) published<br />

regulations concerning fire protection<br />

in nuclear power plants (i.e. reactors<br />

commercially producing electricity)<br />

under the national regulation KTA<br />

2101 in 1985. This regulation is being<br />

updated on a regular basis.<br />

The fire protection at the research<br />

reactor FRM has always been inspired<br />

– but not governed – by this KTA rule.<br />

Especially because of the age and<br />

the structural design of the reactor<br />

hall it is not always possible to fully<br />

comply with KTA-rule 2101. There is<br />

consensus that because of the low risk<br />

arising from the decommissioning of<br />

the FRM this is tolerable.<br />

The main outline of the fire protection<br />

concept is as follows:<br />

• use of burnable substances and<br />

burnable structural materials is<br />

minimized at FRM – especially in<br />

controlled areas<br />

• utilization units (e.g. ventilation<br />

system, reactor hall, emergency<br />

battery room) are separated by<br />

walls and doors with a fireresistance<br />

rating that guarantees a<br />

resistance time of 90 minutes<br />

( following DIN 4102-5) during a<br />

conventional fire<br />

• every room is monitored by fire/<br />

smoke detectors<br />

• there are hand held fire extinguishers<br />

for firefighting by the FRM<br />

personnel (only small fires)<br />

• the combination of fire-resistant<br />

structural material and detector<br />

systems gives the Werkfeuerwehr<br />

(fire department of the TUM<br />

located at the campus site [5])<br />

enough time to arrive for firefighting<br />

• there are enough outdoor and<br />

indoor hydrants for the fire<br />

department to do their work.<br />

All the installations necessary for fire<br />

protection and the inventory of burnable<br />

substances on the site are checked<br />

on a regular basis by the operator.<br />

Additionally there are yearly site<br />

inspections by the TSO, which also<br />

include a detailed review of the<br />

operator’s inspection protocols.<br />

3.3 Radiological<br />

characterisation<br />

The reactor hall and most of the<br />

reactor systems were known to be very<br />

clean – with regard to radioactivity<br />

RESEARCH AND INNOVATION 385<br />

Research and Innovation<br />

Decommissioning of Germany’s First Nuclear Reactor ı Ulrich Lichnovsky, Julia Rehberger, Axel Pichlmaier and Anton Kastenmüller


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

RESEARCH AND INNOVATION 386<br />

2) The results<br />

presented are<br />

mainly from work<br />

done by the<br />

contractor [6]<br />

Measured spot<br />

Heat Exchanger<br />

Pneumatic Tube System<br />

Contaminated parts from the Reactor Pool<br />

Ventilation System<br />

Reactor Hall – concrete wall<br />

| | Tab. 2.<br />

Results from gamma spectroscopy.<br />

– throughout the decades of reactor<br />

operation. Still, there was one known<br />

contamination event with Eu-152/<br />

Eu-154 in the pneumatic rabbit system<br />

that contaminated the tube system,<br />

the reactor hall and the ventilation<br />

system. Additionally there is a Americium<br />

and Plutonium contamination<br />

in at least one pneumatic tube.<br />

In order to show that safe decommissioning<br />

is possible with respect to<br />

radioactive waste and safety of the<br />

working personnel, it was necessary<br />

to characterize the radiological situation<br />

at the FRM – after removal of SNF.<br />

The methodology and the main results<br />

of the radiological characterisation<br />

are described in the following. 2<br />

Gamma dose rate measurements:<br />

Gamma dose rate measurements were<br />

executed for a first overview in the<br />

reactor hall, the pump room – containing<br />

the primary circuit, the heat<br />

exchanger and the water cleaning<br />

system - and on the reactor platform.<br />

The dose rate levels were very low at<br />

every place (< 5 µSv/h).<br />

No new contamination was found.<br />

Only places with known contamination<br />

could be confirmed: pneumatic rabbit<br />

system, heat exchanger, waste storage<br />

areas and some scientific experiments.<br />

The dose rate from activated core<br />

components is negli gible as long as the<br />

open pool is filled with water.<br />

Gamma spectrometry:<br />

In order to determine the most important<br />

nuclides in-situ measurements<br />

with a gamma spectrometer were<br />

performed at spots of increased dose<br />

rate. The summarized results are<br />

presented in Table 2.<br />

Relevant isotopes<br />

Co-60, Ag-108m, Cs-137, Eu-152, Eu-154<br />

Co-60, Ag-108m, Cs-137, Eu-152, Eu-154<br />

Co-60, Cs-137<br />

Co-60, Cs-137, Eu-152, Eu-154<br />

Only naturally occurring nuclides<br />

Nuclide Total activity in concrete [Bq] Total activity in steel [Bq]<br />

H-3 3.1 E<strong>07</strong> –<br />

C-14 2.0 E04 1.5 E04<br />

Fe-55 4.3 E06 1.0 E09<br />

Co-60 2.5 E06 1.3 E<strong>07</strong><br />

Ba-133 1.3 E08 –<br />

Eu-152 3.9 E06 –<br />

Eu-154 2.7 E05 –<br />

| | Tab. 3.<br />

Total activity of the wall of the reactor pool.<br />

Contamination measurements:<br />

To determine the contamination of<br />

the reactor hall and reactor systems,<br />

swipes were taken and measurements<br />

with hand held contamination monitoring<br />

devices were performed. The<br />

three main results were:<br />

• there is no relevant contamination<br />

– with one exception: inside the<br />

pneumatic tube system<br />

• Co-60 and Cs-137 are the main<br />

contaminants<br />

• there are no relevant isotopes<br />

( excluding the pneumatic tube<br />

system), which are difficult to<br />

measure (e.g. H-3, Alpha emitters)<br />

Nuclide<br />

Mn-54<br />

Fe-55<br />

Co-60<br />

Ni-59<br />

Ni-63<br />

Zn-65<br />

Total activity<br />

in aluminium [Bq]<br />

5.2 E<strong>07</strong><br />

| | Tab. 4.<br />

Total activity of the aluminum components<br />

close to the core.<br />

Nuclide<br />

Mn-54<br />

Fe-55<br />

Co-60<br />

Ni-59<br />

Ni-63<br />

1.1 E12<br />

5.4 E11<br />

2.5 E09<br />

3.3 E11<br />

5.9 E12<br />

Total activity<br />

in steel [Bq]<br />

1.1 E<strong>07</strong><br />

3.5 E11<br />

7.7 E09<br />

1.7 E09<br />

2.2 E11<br />

| | Tab. 5.<br />

Total activity of the steel components close to<br />

the core.<br />

Neutron activation calculations:<br />

Neutron activation calculations for<br />

the components close to the reactor<br />

core and close to the neutron beam<br />

tubes were performed to determine<br />

the remaining main radioactive<br />

inventory (see Table 3 to Table 5).<br />

Summary:<br />

The main part of the remaining<br />

radioactivity in the reactor hall is<br />

activation of the components close to<br />

the core. The handling of the highly<br />

activated components is not trivial<br />

(dose rates up to > 1 Sv/h for components<br />

very close to the reactor) but<br />

possible. It is possible to comply<br />

with the acceptance criteria for<br />

final disposal. There are only a few<br />

contaminated systems (pneumatic<br />

rabbit tubes, primary circuit with<br />

heat exchanger). The decommissioning<br />

of these systems will be technically<br />

possible.<br />

3.4 Waste management<br />

Clearance/free release of material<br />

from controlled areas:<br />

Most of the material from the controlled<br />

areas of the FRM can be<br />

released without any restriction. For<br />

this clearance measurements have to<br />

be performed by FRM and those<br />

measurements have to be confirmed<br />

by an independent third party (at<br />

FRM: the Bavarian State Agency for the<br />

Environment (LfU)). After that the<br />

material is cleared for unrestricted use<br />

or restricted conventional dis posal.<br />

Conventional pollutants:<br />

Due to the age of the FRM there are<br />

several conventional pollutants that<br />

have to be taken into account when<br />

planning the disposal.<br />

In order to shield some of the neutron<br />

beam guide tubes going through<br />

the reactor hall, concrete tubs containing<br />

water were built around the<br />

neutron guide tubes. The concrete<br />

shielding tubs were constructed from<br />

concrete bars that were joint by<br />

material containing PCB (sum PCB<br />

9.2 g/kg). The concrete bars were<br />

covered with insulating material also<br />

containing PCB and lead (sum PCB<br />

2 g/kg; Lead 11 g/kg).<br />

There are two possible ways of<br />

disposing of the concrete contaminated<br />

with PCB for the FRM:<br />

• breaking up the concrete into<br />

small parts (size of a human fist),<br />

burning every single piece,<br />

disposing of the pieces conventionally<br />

or<br />

• disposing of the concrete bars<br />

in appropriate containers at a<br />

licensed underground disposal<br />

site.<br />

Research and Innovation<br />

Decommissioning of Germany’s First Nuclear Reactor ı Ulrich Lichnovsky, Julia Rehberger, Axel Pichlmaier and Anton Kastenmüller


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

The disposal route preferred by the<br />

competent state disposal company is<br />

the underground disposal site.<br />

No asbestos could be found so far.<br />

Disposal of radioactive waste:<br />

The activated components and some<br />

contaminated pieces have to be prepared<br />

for disposal in a federal final<br />

repository. At the moment FRM has to<br />

prepare the radioactive waste in such<br />

conditions (stable, packaging, limit for<br />

activity, limit for conventional<br />

pollutants) that it complies with the<br />

acceptance criteria of Schacht Konrad<br />

[7].<br />

There are wastes at the FRM site<br />

that cannot be brought in such a form,<br />

that they comply with the acceptance<br />

criteria. The problematic wastes are:<br />

• beryllium reflector elements and<br />

• graphite reflector elements.<br />

The disposal of the FRM reflector<br />

elements is an unresolved problem.<br />

The TUM Institute for Radiochemistry<br />

already presented information regarding<br />

the disposal of the beryllium<br />

elements [8].<br />

For the licensed final repository<br />

Schacht Konrad the H-3-inventory<br />

(radioactivity) and the beryllium<br />

(conventional pollutant) inventory<br />

are too big. This is most likely also the<br />

case for the C-14-inventory of the<br />

graphite elements. The responsible<br />

federal authority (former Federal<br />

Agency for Radiation Protection (BfS –<br />

Bundesamt für Strahlenschutz) now<br />

Federal Office for the Safety of Nuclear<br />

Waste Management (BfE – Bundesamt<br />

für kerntechnische Entsorgungssicherheit))<br />

is legally obliged to provide<br />

a final repository for this kind of<br />

wastes.<br />

Until when the packaged wastes<br />

will be safely stored in a final repository,<br />

FRM remains the owner of<br />

the radioactive wastes, thus also<br />

respon sible (especially financially) to<br />

ensure safe storage of the radioactive<br />

material.<br />

As stated above the spent nuclear<br />

fuel was already repatriated to the<br />

United States.<br />

• destruction of the reactor building<br />

with release of radioactivity (e.g.<br />

after an earthquake)<br />

• outage of important systems<br />

For the calculation of a possible<br />

release of radioactivity into the environment,<br />

the inventory of radioactivity<br />

at the FRM site was taken from the<br />

radiological characterisation described<br />

above (see chapter 3.3). The<br />

possible release of activity was calculated<br />

conservatively following national<br />

and international guidelines.<br />

The German Radiation Protection<br />

Ordinance (Strahlenschutzverordnung<br />

– StrlSchV) requires that the effective<br />

radiation dose which follows the worst<br />

accident conditions has to be below<br />

50 mSv. The result of the safety analysis<br />

was: the possible radiation dose for<br />

every group of age is well below the<br />

acceptable limits (also including radiation<br />

doses to the organs).<br />

4 Status of the project<br />

4.1 Clearance of material<br />

Clearance measurements are performed<br />

routinely by the FRM radiation<br />

protection personnel. The preferred<br />

method of such measurements<br />

is a circa 1 m 3 box (FMA) with gammasensitive<br />

detectors on every side.<br />

Clearance for unrestricted use of<br />

material that is measured in the FMA<br />

can be achieved within a few weeks –<br />

including the time the independent<br />

expert takes to verify the FRM measurements.<br />

Material that can’t be measured in<br />

the FMA – due to its size – can take a<br />

much longer time to achieve the clearance<br />

for unrestricted use (roughly half<br />

a year). Clearance measurements for<br />

this kind of material are performed<br />

with in-situ gamma spectrometry and/<br />

or hand-held contamination monitors<br />

with additional material probes.<br />

Clearance for restricted use (i.e.<br />

conventional disposal sites or conventional<br />

incineration) can take a much<br />

longer time (up to a few years). There<br />

are a few problems for this way of<br />

clearance:<br />

• hard to find appropriate sites<br />

• hard to find sites willing to take<br />

material from a nuclear site<br />

• conventional authority and<br />

nuclear/radiation protection<br />

author ity have to communicate<br />

• operator has to coordinate<br />

everything<br />

From the year 2011 until the beginning<br />

of <strong>2018</strong> almost 170 metric tonnes<br />

of material have been cleared for free<br />

release. Clearance for restricted use<br />

(incineration) has been achieved for<br />

almost 100 kg.<br />

4.2 Ventilation system<br />

The license for decommissioning<br />

issued by the responsible authority<br />

described the present ventilation<br />

system as appropriate for the time of<br />

decommissioning.<br />

The visualisation scheme of the<br />

present ventilation system is shown in<br />

Figure 3.<br />

Because of the lack of filtration<br />

under normal operation (this was also<br />

the case during reactor operation) the<br />

TSO was able to come up with a<br />

scenario in which, because of the<br />

requested low permissible yearly<br />

emissions (1E6 Bq per year), the<br />

emission limit for one year could be<br />

exhausted into the air – undetected by<br />

the operator – in a few hours. Although<br />

RESEARCH AND INNOVATION 387<br />

3.5 Safety analysis of possible<br />

accidents<br />

The safety analysis of possible accidents<br />

and the possible resulting radiation<br />

dose to the public was done in<br />

accordance with German legislation<br />

and regulations.<br />

For the safety analysis a conservative<br />

spectrum of possible incidents<br />

was selected. They can be summed up<br />

as follows:<br />

• long lasting fire in the reactor hall<br />

| | Fig. 3.<br />

Visualisation of the unfiltered ventilations system.<br />

Research and Innovation<br />

Decommissioning of Germany’s First Nuclear Reactor ı Ulrich Lichnovsky, Julia Rehberger, Axel Pichlmaier and Anton Kastenmüller


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

RESEARCH AND INNOVATION 388<br />

the scenario described by the TSO<br />

seems to be extremely unlikely, FRM<br />

decided to install a new ventilation<br />

system – with filtered exhaust air – for<br />

the time of decommissioning and the<br />

use of the reactor hall after decommissioning.<br />

As long as the ventilation system<br />

is not accepted by the licensing<br />

authority, FRM is not allowed to use<br />

tools in the reactor hall that could<br />

cause emission of aerosols into the air,<br />

thus rendering impossible every<br />

significant step in physical decommissioning.<br />

4.3 Radioactive Waste<br />

Most of the radioactive material is still<br />

stored in the reactor hall. The components<br />

that were close to the reactor<br />

core are still in the reactor pool<br />

covered with water.<br />

The disposal of radioactive waste is<br />

not going on at the moment. This is<br />

mainly due to the following:<br />

The radioactive material can’t be<br />

processed or separated in the reactor<br />

hall because of the state of the ventilation<br />

system described in chapter 4.2.<br />

Additionally, appropriate financial<br />

resources and personnel have not yet<br />

been allocated for the disposal of<br />

radioactive waste.<br />

4.4 Financing of the project<br />

FRM is part of FRM II which is a central<br />

scientific facility of TUM. In order to<br />

pay for projects necessary for the<br />

decommissioning (for example new<br />

construction of the ventilation system<br />

and disposal of radioactive waste)<br />

FRM has to ask the Board of the TUM<br />

for financial resources. The TUM<br />

Board asks the responsible Ministry of<br />

Science for money which again<br />

requests their financial means from<br />

the Bavarian Parliament. If the<br />

Bavarian Parliament decides to<br />

finance the necessary projects, the<br />

Ministry – responsible for publicsector<br />

construction – assigns their<br />

Building and Construction authority<br />

to plan the construction project (in<br />

terms of public finance every step of<br />

the decommissioning project is a<br />

construction project).<br />

This planning is than done by FRM<br />

(and of course contractors working<br />

for FRM) and presented to the construction<br />

committee of the Bavarian<br />

Parliament by the Building and Construction<br />

authority.<br />

If the construction committee sees<br />

the project feasible, the Building<br />

and Construction authority has<br />

access to financial resources. But still<br />

FRM is the operator responsible for<br />

the nuclear installation. So in very<br />

close cooperation the Building and<br />

Construction authority and FRM are<br />

acting as contracting authorities for<br />

the decommissioning projects.<br />

5 Conclusion<br />

The history and the current state of<br />

the FRM have been described. Once<br />

the remaining issues will be resolved,<br />

the decommissioning will proceed as<br />

licensed. The complex financing<br />

procedure described in chapter 4.4 is<br />

adding an additional level of complexity<br />

to the already challenging<br />

decommissioning project.<br />

References<br />

[1] Festschrift der Technischen Universität<br />

München, „40 Jahre Atom-Ei Garching“.<br />

[2] A. Steyerl, 1969, Physics Letters 29B<br />

33-5.<br />

[3] Bayerische Staatsministerium für<br />

Umwelt und Verbraucherschutz<br />

StMUV, 03.04.2014, „Genehmigung<br />

nach § 7 Atomgesetz (AtG) zum Abbau<br />

der Reaktoranlage des Forschungsreaktors<br />

München FRM in Garching“.<br />

[4] Der Spiegel, 15.12.1999, „Chronologie:<br />

Die Brandkatastrophe am Düsseldorfer<br />

Flughafen.“<br />

| | Editorial Advisory Board<br />

Frank Apel<br />

Erik Baumann<br />

Dr. Maarten Becker<br />

Dr. Erwin Fischer<br />

Eckehard Göring<br />

Dr. Ralf Güldner<br />

Carsten Haferkamp<br />

Dr. Petra-Britt Hoffmann<br />

Dr. Guido Knott<br />

Dr. Willibald Kohlpaintner<br />

Ulf Kutscher<br />

Andreas Loeb<br />

Dr. Thomas Mull<br />

Dr. Ingo Neuhaus<br />

Dr. Joachim Ohnemus<br />

Prof. Dr. Winfried Petry<br />

Dr. Tatiana Salnikova<br />

Dr. Andreas Schaffrath<br />

Dr. Jens Schröder<br />

Prof. Dr. Jörg Starflinger<br />

Dr. Wolfgang Steinwarz<br />

Prof. Dr. Bruno Thomauske<br />

Dr. Walter Tromm<br />

Dr. Hans-Georg Willschütz<br />

Dr. Hannes Wimmer<br />

Ernst Michael Züfle<br />

Imprint<br />

| | Editorial<br />

Christopher Weßelmann (Editor in Chief)<br />

Im Tal 121, 45529 Hattingen, Germany<br />

Phone: +49 2324 4397723<br />

Fax: +49 2324 4397724<br />

E-mail: editorial@nucmag.com<br />

| | Official Journal of<br />

Kerntechnische Gesellschaft e. V. (KTG)<br />

| | Publisher<br />

INFORUM Verlags- und<br />

Verwaltungsgesellschaft mbH<br />

Robert-Koch-Platz 4, 10115 Berlin, Germany<br />

Phone: +49 30 498555-30, Fax: +49 30 498555-18<br />

www.nucmag.com<br />

| | General Manager<br />

Christian Wößner, Berlin, Germany<br />

| | Advertising and Subscription<br />

Petra Dinter-Tumtzak<br />

Robert-Koch-Platz 4, 10115 Berlin, Germany<br />

Phone: +49 30 498555-30, Fax: +49 30 498555-18<br />

E-mail: petra.dinter@kernenergie.de<br />

| | Prize List for Advertisement<br />

Valid as of 1 January <strong>2018</strong><br />

Published monthly, 9 issues per year<br />

Germany:<br />

Per issue/copy (incl. VAT, excl. postage) 24.- €<br />

Annual subscription (incl. VAT and postage) 176.- €<br />

All EU member states without VAT number:<br />

Per issue/copy (incl. VAT, excl. postage) 24.- €<br />

Annual subscription (incl. VAT, excl. postage) 176.- €<br />

EU member states with VAT number<br />

and all other countries:<br />

Per issues/copy (no VAT, excl. postage) 22.43 €<br />

Annual subscription (no VAT, excl. postage) 164.49 €<br />

| | Copyright<br />

The journal and all papers and photos contained in it<br />

are protected by copyright. Any use made thereof outside<br />

the Copyright Act without the consent of the publisher,<br />

INFORUM Verlags- und Verwaltungsgesellschaft mbH,<br />

is prohibited. This applies to reproductions, translations,<br />

microfilming and the input and incorporation into<br />

electronic systems. The individual author is held<br />

responsible for the contents of the respective paper.<br />

Please address letters and manuscripts only to the<br />

Editorial Staff and not to individual persons of the<br />

association´s staff. We do not assume any responsibility<br />

for unrequested contributions.<br />

Signed articles do not necessarily represent the views<br />

of the editorial.<br />

| | Layout<br />

zi.zero Kommunikation<br />

Berlin, Germany<br />

Antje Zimmermann<br />

| | Printing<br />

inpuncto:asmuth<br />

druck + medien gmbh<br />

Baunscheidtstraße 11<br />

53113 Bonn<br />

ISSN 1431-5254<br />

Research and Innovation<br />

Decommissioning of Germany’s First Nuclear Reactor ı Ulrich Lichnovsky, Julia Rehberger, Axel Pichlmaier and Anton Kastenmüller


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

[5] History of the Werkfeuerwehr, Technical<br />

University of Munich, Garching,<br />

https://www.feuerwehr.tum.de/index.<br />

php?id=30.<br />

[6] S. Thierfeldt et. al. (Brenk Systemplanung),<br />

March 2013, „Sicherheitsbericht<br />

zur Stilllegung des Forschungsreaktors<br />

München (FRM) der Technischen<br />

Universität München”.<br />

[7] K. Kugel, K. Möller (BfS), 20.2.2017,<br />

„Anforderungen an endzulagernde<br />

radioaktive Abfälle (Endlagerungsbedingungen,<br />

Stand: Februar 2017) –<br />

Endlager Konrad –”.<br />

[8] C. Lierse et. al., 28.12.2010, Abschlussbericht<br />

FKZ02S7951: „Entsorgung von<br />

Beryllium/Berylliumoxid und Cadmium<br />

aus Forschungsreaktoren“.<br />

Abbreviations<br />

FMA<br />

HEU<br />

KTA<br />

PCB<br />

SNF<br />

Freimessanlage (Release<br />

Measurement Facility)<br />

Highly Enriched Uranium<br />

Kerntechnischer Ausschuss (Nuclear<br />

Safety Standards Commission)<br />

Polychlorinated biphenyl<br />

Spent Nuclear Fuel<br />

StMUV Staatsministerium für Umwelt,<br />

Gesundheit und Verbraucherschutz<br />

(Bavarian state ministry of the<br />

environment, health and consumer<br />

protection)<br />

TSO<br />

Technical Safety Organisation<br />

Authors<br />

While You Were Sleeping:<br />

The Unnoticed Loss of Carbon-free<br />

Generation in the United States<br />

Chris Vlahoplus, Ed Baker, Sean Lawrie, Paul Quinlan and Benjamin Lozier<br />

M. Sc. Ulrich Lichnovsky<br />

Fachbereichsleiter Stilllegung und<br />

Rückbau FRM(alt)<br />

B. Sc. Julia Rehberger<br />

Ingenieurin Dokumentation und<br />

Änderungsdienst FRM(alt)<br />

Dr. Axel Pichlmaier<br />

Fachbereichsleiter Reaktorbetrieb<br />

FRM II<br />

Dr. Anton Kastenmüller<br />

Technischer Direktor FRM II<br />

FRM II, Forschungs-Neutronenquelle<br />

Heinz Maier-Leibnitz<br />

Technische Universität München<br />

Lichtenbergstr. 1<br />

85748 Garching, Germany<br />

389<br />

ENERGY POLICY, ECONOMY AND LAW<br />

The United States has embarked on actions to combat climate change by putting a focus on lowering the carbon<br />

emissions from the electric generation sector. A pillar of this approach is to promote the greater use of renewable<br />

resources, such as wind and solar. The past decade has seen significant growth in carbon-free energy from wind and<br />

solar. Generation from these resources reached 333,000 GWh in 2017. However, unbeknownst to many who care about<br />

climate change, most of the progress made to date through renewables is at significant risk due to the loss or potential<br />

loss of more than 228,000 GWh of nuclear carbon-free generation.<br />

Renewables growth:<br />

Investment in carbon-free<br />

generation<br />

Over the past decade, wind and solar<br />

have grown in large part due to<br />

policies such as renewable portfolio<br />

standards, federal tax incentives, and<br />

in some cases state tax incentives. Few<br />

would argue that the addition of<br />

renewable generation is a critical<br />

element of a comprehensive carbonreduction<br />

strategy.<br />

Since 2008, the policy focus on<br />

renewables has attracted hundreds of<br />

billions of dollars of investment for<br />

the development of wind and solar.<br />

The results have been significant – in<br />

the past decade 90 % of the current<br />

operating wind and solar capacity was<br />

added, roughly 75 GW of wind and<br />

52 GW solar. [1] Another result of<br />

these investments has been to help<br />

wind and solar drive down the cost<br />

curve reaching a more competitive<br />

position. The policies promoting<br />

renewables have clearly contributed<br />

to the addition of a meaningful<br />

amount of carbon-free electricity as<br />

well as to jump-starting an industry in<br />

the United States.<br />

Early retirement: Nuclear<br />

generators face challenges<br />

In the same timeframe, natural gas<br />

prices have driven down power prices,<br />

causing difficulties for both renewables<br />

and existing generation. The<br />

nuclear industry in particular has<br />

been challenged by low natural gas<br />

prices and the lack of overall policy<br />

support for its zero-carbon attributes.<br />

As a result, the nuclear industry has<br />

faced a wave of actual and announced<br />

retirements. The most vulnerable<br />

nuclear plants have been small, singleunit<br />

plants and merchant facilities in<br />

deregulated markets with low energy<br />

and capacity values. Under these<br />

conditions, existing nuclear plants are<br />

having difficulty competing in bidbased<br />

markets and in some regulated<br />

as well. Some states have recognized<br />

this issue and have explored zerocarbon<br />

incentives to keep plants open<br />

that would otherwise have shut down.<br />

However, these incentives are being<br />

challenged and still make these plants,<br />

while technically “reprieved,” what<br />

we categorize as “at risk.”<br />

In 2016, the New York Public Service<br />

Commission approved a Clean Energy<br />

Standard (CES), which supported<br />

the continuation of more than 3 GW<br />

of nuclear capacity (i.e., Fitzpatrick,<br />

Ginna, and Nine Mile Point nuclear<br />

plants). [2] In the same year, Illinois<br />

passed The Future Energy Jobs Bill<br />

that provides nuclear plants with<br />

$ 0.01/kWh, saving almost 3 GW of<br />

nuclear capacity (i.e., Clinton and<br />

Quad Cities nuclear plants). [3] The<br />

actions in New York and Illinois<br />

sustained more than 50,000 GWh<br />

of carbon-free generation per year.<br />

Meanwhile, Connecticut recently<br />

estimated it would cost roughly<br />

$ 5.5 billion to replace the carbon-free<br />

generation from Dominion Energy’s<br />

Millstone station with renewables. [4]<br />

To understand the potential for<br />

loss of carbon-free generation, Scott-<br />

Madden identified four categories of<br />

“at-risk” nuclear assets. Each nuclear<br />

plant operating in 2008 (a date that<br />

coincides with the rapid growth in<br />

renewables) was reviewed and, if<br />

applicable, placed into one of the<br />

following “at-risk” categories:<br />

• Retired – Any nuclear plant that<br />

has ceased operations since 2008.<br />

Some plants on the list had physical<br />

Energy Policy, Economy and Law<br />

While You Were Sleeping: The Unnoticed Loss of Carbon-free Generation in the United States ı Chris Vlahoplus, Ed Baker, Sean Lawrie, Paul Quinlan and Benjamin Lozier


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

ENERGY POLICY, ECONOMY AND LAW 390<br />

Category Nuclear plants Capacity<br />

(MW)<br />

Retired<br />

Announced<br />

Crystal River, Fort Calhoun, Kewaunee, San Onofre, and<br />

Vermont Yankee<br />

Beaver Valley, Davis-Besse, Diablo Canyon, Indian Point,<br />

Oyster Creek, Palisades, Perry, Pilgrim, and Three Mile Island<br />

issues driving retirement, but they<br />

may have continued to operate<br />

under different economic circumstances,<br />

including markets valuing<br />

carbon-free generation<br />

• Announced – Any nuclear plants<br />

where the owner has announced<br />

plans to cease operations early<br />

• In Jeopardy – Any nuclear plant<br />

where the owner has indicated<br />

the plant may close if market<br />

conditions do not improve<br />

• Reprieved – Any nuclear plant<br />

that has received state support to<br />

remain open. These were on the<br />

cusp of closure, and absent followthrough<br />

on these programs, the<br />

plants will likely close<br />

For each “at-risk” category, we calculated<br />

total capacity and annual generation.<br />

[5] As seen in the Table 1<br />

below, more than 28,000 MW of<br />

Generation<br />

(GWh)<br />

4,674 37,795<br />

11,109 89,818<br />

In Jeopardy Duane Arnold, Hope Creek, Millstone, and Salem 6,189 50,044<br />

Reprieved Clinton, Fitzpatrick, Ginna, Nine Mile Point, and Quad Cities 6,232 50,388<br />

“At-risk” nuclear total: 28,204 228,045<br />

| | Tab. 1.<br />

Nuclear capacities retired or facing early retirement in the U.S.<br />

| | Fig. 1.<br />

Change in U.S. Carbon-Free Generation.<br />

| | Fig. 2.<br />

In-State Renewable Generation vs. “At-Risk” U.S. Nuclear Generation.<br />

nuclear capacity has retired or<br />

is facing early retirement. The<br />

228,045 GWh of nuclear generation<br />

retired since 2008 or at risk of early<br />

retirement represents 5.6 % of total<br />

U.S. net generation in 2016.<br />

Carbon impact: Early<br />

retirement of nuclear<br />

diminishes renewable gains<br />

To understand the potential impact on<br />

carbon-free energy, ScottMadden compared<br />

“at-risk” nuclear assets facing<br />

early retirement to all wind and solar<br />

assets operating at the end of 2017. [6]<br />

As discussed previously, there has been<br />

great publicity around the wind and<br />

solar capacity that has been added over<br />

the past decade. If compared on this<br />

popular measure, nuclear capacity at<br />

risk of early retirement only accounts<br />

for 20 % of the total 2017 renewable<br />

capacity. If at first glance, it is not<br />

alarming, it is because capacity is not<br />

the right measure to show impact on<br />

carbon. To understand that, we must<br />

compare on electric output, or energy.<br />

When compared on energy output,<br />

the potential loss of nuclear presents a<br />

greater concern. With capacity factors<br />

greater than 90 %, losing a smaller<br />

amount of nuclear can produce outsized<br />

impacts on carbon-free generation<br />

compared to the low-capacity<br />

factor of wind and solar (35 % to<br />

22 %). [7] In 2017, wind and<br />

solar produced a combined total of<br />

333,000 GWh of carbon-free generation<br />

(see Figure 1). This gain has the<br />

potential to be reduced by 68 % or<br />

228,045 GWh through the early<br />

retirement of nuclear capacity. In fact,<br />

the United States has lost 11 % of the<br />

renewable generation from plants<br />

already retired.<br />

In the states that host “at-risk”<br />

nuclear assets, the potential lost<br />

carbon- free generation from nuclear<br />

energy exceeds total in-state renew able<br />

energy generation (see Figure 2). [8]<br />

This represents a sig nificant barrier to<br />

achieving near-term state- level reductions<br />

in greenhouse gas emissions.<br />

A further potential challenge is<br />

the relicensing of nuclear plants.<br />

Those plants not currently at risk of<br />

early retirement must renew their operating<br />

licenses with the U.S. Nuclear<br />

Regulatory Commission in the next<br />

20 years. If these plants do not renew<br />

their licenses, even more carbon- free<br />

generation would be lost. In fact, wind<br />

and solar output would need to more<br />

than double just to break even on the<br />

loss of carbon-free generation from<br />

the retirement of the entire nuclear<br />

fleet (see Figure 3).<br />

Germany: A cautionary tale<br />

Many have pointed to Germany as a<br />

shining example of a country that has<br />

led the way in deploying renewables.<br />

In 2000, the Renewable Energy Act<br />

established feed-in tariffs and priority<br />

grid access for renewables. The action<br />

represents a key milestone in the<br />

Energiewende or transition to a lowcarbon<br />

economy based on renewable<br />

resources. Since then, the country has<br />

spent roughly $ 222 billion on renewable<br />

subsidies. [9] The result is renewable<br />

energy as a percentage of gross<br />

electricity generation increasing from<br />

6.2 % in 2000 to 31. 3% in 2015. [10]<br />

At the same time however, Germany<br />

has embarked on a strategy of shuttering<br />

its nuclear plants. Roughly 40 %<br />

of the country’s nuclear capacity<br />

was shut down in 2011, following the<br />

Energy Policy, Economy and Law<br />

While You Were Sleeping: The Unnoticed Loss of Carbon-free Generation in the United States ı Chris Vlahoplus, Ed Baker, Sean Lawrie, Paul Quinlan and Benjamin Lozier


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

| | Fig. 3.<br />

Total U.S. Renewable Generation vs. Total U.S. Nuclear Generation.<br />

| | Fig. 4.<br />

Annual greenhouse gas emissions in German electricity sector.<br />

About ScottMadden<br />

ScottMadden is the management<br />

consulting firm that does what it<br />

takes to get it done right. Our practice<br />

areas include Energy, Clean Tech &<br />

Sustainability, Corporate & Shared<br />

Services, Grid Transformation, and<br />

Rates, Regulation, & Planning. We<br />

deliver a broad array of consulting<br />

services ranging from strategic planning<br />

through implementation across<br />

many industries, business units,<br />

and functions. To learn more, visit<br />

www.scottmadden.com | Twitter |<br />

Facebook | LinkedIn<br />

About ScottMadden Energy<br />

Practice<br />

We know energy from the ground up.<br />

Since 1983, we have been energy<br />

consultants. We have served more<br />

than 400 clients, including 20 of the<br />

top 20 energy utilities. We have performed<br />

more than 3,000 projects<br />

across every energy utility business<br />

unit and every function. We have<br />

helped our clients develop strategies,<br />

improve operations, reorganize companies,<br />

and implement initiatives. Our<br />

broad and deep energy utility expertise<br />

is not theoretical – it is experience<br />

based.<br />

ENERGY POLICY, ECONOMY AND LAW 391<br />

Fukushima nuclear accident. [11] As<br />

a result, despite the addition of significant<br />

renewable resources, there is<br />

limited progress in reducing total<br />

carbon emissions in the electricity<br />

sector due to the early retirement of<br />

nuclear plants. In fact, greenhouse gas<br />

emission from the electricity sector has<br />

only decreased 3 % from 2000 to 2015<br />

(see Figure 4). [12]<br />

Conclusion: Rapid and deep<br />

carbon reductions require<br />

nuclear assets<br />

Investments in renewables have made<br />

a significant contribution to emissionfree<br />

electricity generation. For those<br />

concerned with climate change, this<br />

represents a meaningful step in the<br />

right direction. The early retirement of<br />

“at-risk” nuclear, however, puts the<br />

United States in danger of “giving<br />

back” an amount equivalent to twothirds<br />

of the overall carbon-free generation<br />

supplied from wind and solar. In<br />

states with these nuclear assets, the<br />

loss represents a significantly larger<br />

impact. The losses could become even<br />

greater if more nuclear plants do not<br />

renew operating relicenses.<br />

However, a glimmer of hope<br />

emerges as states, such as New York<br />

and Illinois, are developing policies<br />

to value the carbon-free generation<br />

provided by nuclear plants. Even<br />

environ mentalists are beginning to<br />

offer support for nuclear energy. In<br />

Illinois, the Union of Concerned<br />

Scientists called the Future Energy<br />

Jobs Bill “one of the most comprehensive<br />

state energy bills ever crafted<br />

and is the most important climate<br />

bill in Illinois history.” [13] In addition,<br />

an open letter signed by more<br />

than 70 ecologists and conservation<br />

researchers stated that wind and solar<br />

are promising, but “nuclear power –<br />

being by far the most compact and<br />

energy dense of sources – could also<br />

make a major, and perhaps leading,<br />

contribution” to carbon emission<br />

reductions. [14]<br />

If nuclear plants are not saved in<br />

the near term, it will put the entire<br />

industry at risk. For once a nuclear<br />

plant shuts down, it will not come<br />

back. If enough nuclear plants shut<br />

down, a tipping point may be reached<br />

for the entire industry in the United<br />

States, and we will lose forever that<br />

carbon-free generation. [15] While<br />

one might argue that in the long run,<br />

this nuclear hole may be filled with<br />

renewables and other evolving clean<br />

technologies, in the near term it is<br />

certain that a rapid and deep carbon<br />

reduction will require these nuclear<br />

assets.<br />

About the Authors<br />

Chris Vlahoplus is a partner and leads<br />

the firm’s Clean Tech & Sustainability<br />

practice, Ed Baker is a partner and<br />

co-leads the firm’s nuclear and gas<br />

practices, Sean Lawrie is a partner and<br />

co-leads the firm’s nuclear practice,<br />

Paul Quinlan is a clean tech manager,<br />

and Benjamin Lozier is an energy<br />

research analyst.<br />

This report is one of a series of<br />

ScottMadden white papers on clean<br />

energy technologies and is based on<br />

our independent analysis. The<br />

contents have been updated from the<br />

initial version to reflect the recent<br />

change of FirstEnergy Solutions units<br />

from “in jeopardy” to “announced.”<br />

References<br />

[1] Data obtained from Bloomberg New<br />

Energy Finance’s <strong>2018</strong> Sustainable<br />

Energy in America Factbook. Wind<br />

capacity is reported in AC; solar<br />

capacity is reported in DC.<br />

[2] New York State Department of Public<br />

Service, Governor Cuomo Announces<br />

Establishment of Clean Energy Standard<br />

that Mandates 50 Percent Renewables<br />

by 2030.<br />

[3] Forbes, Illinois Sees The Light – Retains<br />

Nuclear Power. December 4, 2016.<br />

Energy Policy, Economy and Law<br />

While You Were Sleeping: The Unnoticed Loss of Carbon-free Generation in the United States ı Chris Vlahoplus, Ed Baker, Sean Lawrie, Paul Quinlan and Benjamin Lozier


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

ENERGY POLICY, ECONOMY AND LAW 392<br />

[4] Connecticut Department of Energy &<br />

Environmental Protection Connecticut<br />

Public Utilities Regulatory Authority,<br />

Resource Assessment of Millstone<br />

Pursuant to Executive Order No. 59 and<br />

Public Act 17-3; Determination<br />

Pursuant to Public Act 17-3. February 1,<br />

<strong>2018</strong>.<br />

[5] Capacity was calculated using net<br />

summer peak capacity obtained from<br />

SNL Financial. Generation was<br />

calculated using 92.3 % capacity factor,<br />

which represents the average capacity<br />

factor for the U.S. nuclear fleet in 2016<br />

as reported by the Energy Information<br />

Administration.<br />

[6] Data obtained from Bloomberg New<br />

Energy Finance’s <strong>2018</strong> Sustainable<br />

Energy in America Factbook. Wind<br />

capacity is reported in AC; solar<br />

capacity is reported in DC.<br />

Deutsche Sekretariatsführung ISO/TC<br />

85/SC 6 Reactor-Technology<br />

Janine Winkler und Michael Petri<br />

[7] Average capacity factor of utility-scale<br />

generators in 2016: nuclear 92.3 %,<br />

wind 34.5 %, utility-scale solar 25.1 %,<br />

and solar thermal 22.2 %. Source:<br />

Energy Information Administration,<br />

Electric Power Annual. Distributed solar<br />

capacity factors are often below 20 %.<br />

[8] These states include California,<br />

Connecticut, Florida, Illinois, Iowa,<br />

Massachusetts, Michigan, Nebraska,<br />

New Jersey, New York, Ohio,<br />

Pennsylvania, Vermont, and Wisconsin.<br />

[9] The New York Times. Germany’s Shift to<br />

Green Power Stalls, Despite Huge<br />

Investments. October 7, 2017.<br />

[10] German Environment Agency on the<br />

basis of Working Group on Renewable<br />

Energy Statistics (AGEE-Stat)<br />

[11] The Economist. Is Germany's Energiewende<br />

Cutting GHG Emissions? March<br />

20, 2017.<br />

[12] United Nations Framework Convention<br />

on Climate Change Data Interface<br />

[13] Union of Concerned Scientists. A Huge<br />

Success in Illinois: Future Energy Jobs Bill<br />

Signed Into Law. December 8, 2016.<br />

[14] The Washington Post. Why Climate<br />

Change Is Forcing Some<br />

Environmentalists to Back Nuclear<br />

Power. December 16, 2014.<br />

Authors<br />

Chris Vlahoplus<br />

Ed Baker<br />

Sean Lawrie<br />

Paul Quinlan<br />

Benjamin Lozier<br />

ScottMadden<br />

2626 Glenwood Ave., Suite 480<br />

Raleigh, NC 27608, USA<br />

Im Auftrag des Bundesministeriums für Umwelt, Naturschutz und nukleare Sicherheit (BMU), vertreten durch die<br />

KTA-Geschäftsstelle, hat DIN ab <strong>2018</strong> die Sekretariatsführung des ISO/TC 85/SC 6 Reactor technology zusammen mit<br />

China übernommen. Ziel ist hierbei, den deutschen Einfluss in der internationalen Normung zu erhöhen und die<br />

Möglichkeit wahrzunehmen, deutsche Normen und KTA-Regeln in die internationalen Normen zu überführen. Damit<br />

möchte Deutschland international seinen Beitrag für die nukleare Sicherheit bei der friedlichen Nutzung der<br />

Kernenergie leisten.<br />

Einleitung<br />

Im Jahr 2017 fanden bei DIN mehrere<br />

Workshops in Zusammenarbeit mit<br />

dem Bundesministerium für Umwelt,<br />

Naturschutz und nukleare Sicherheit<br />

(BMU) und der KTA-Geschäftsstelle<br />

(Kerntechnischen Ausschuss – KTA)<br />

statt, um den aktuellen Stand der<br />

Normung im Bereich der Kerntechnik<br />

zu eruieren und das weitere Vorgehen<br />

über das Jahr 2022 hinaus zu planen.<br />

Die Workshops haben verdeutlicht,<br />

dass der aktuelle Stand der Gesetzgebung<br />

im Verbund mit den nachgeordneten<br />

Regeln in der Kerntechnik<br />

und im Strahlenschutz verlässlich<br />

ist und die deutschen Regeln international<br />

sehr geachtet sind und bereits<br />

in einigen Ländern verwendet<br />

werden. Die Herausforderung ist es<br />

daher, die aufgebaute Kompetenz zu<br />

erhalten und zusammen mit anderen<br />

internationalen Institutionen weiterzuentwickeln.<br />

Zusätzlich sind die veränderten<br />

Anforderungen in Bezug auf den<br />

bevorstehenden Ausstieg Deutschlands<br />

aus der Kerntechnik zu berücksichtigen.<br />

Bei DIN hat dies bereits zu<br />

einer Verlagerung der Aktivitäten<br />

geführt, wobei der Fokus nun stärker<br />

auf dem Bereich der Normen zum<br />

Strahlenschutz liegt. Hierzu zählen<br />

die Normen für z.B. Radionuklidlabore<br />

für die Medizin, den Brandschutz<br />

oder auch Abschirmeinrichtungen.<br />

DIN wird auch weiterhin<br />

sicherstellen, die Normen für den<br />

Leistungsbetrieb auf dem aktuellen<br />

Stand von Wissenschaft und Technik<br />

zu halten.<br />

Im Kerntechnischen Ausschuss<br />

(KTA) wird ebenfalls diskutiert, wie<br />

die Regelwerksarbeit im KTA – über<br />

2022 hinaus – gestaltet werden kann.<br />

In diesem Zusammenhang hat das<br />

BMU einvernehmlich mit dem KTA-<br />

Präsidium beschlossen, dass die KTA-<br />

Geschäftsstelle (KTA-GS) verstärkt die<br />

Koordination und Mitarbeit bei der<br />

internationalen Normung für Kernkraftwerke<br />

übernehmen soll. Dies<br />

impliziert eine aktivere Mitarbeit der<br />

KTA-GS in allen wichtigen internationalen<br />

Normungsgremien, insbesondere<br />

in den Gremien, in denen<br />

dies bisher nur punktuell erfolgt ist<br />

(ISO, CEN, ASME), um die deutschen<br />

Interessen, die im KTA gebündelt<br />

sind (Betreiber, Hersteller, Behörden,<br />

Gutachter), möglichst effektiv auch<br />

international zu vertreten und zu<br />

koordinieren. Wesentliche Gesichtspunkte<br />

bei dieser Entscheidung waren<br />

die enge Verzahnung zwischen<br />

KTA-Regeln und den thematisch zugehörigen<br />

nationalen Normen. Die<br />

zunehmende Bedeutung der Standardisierung<br />

im internationalen Bereich<br />

(insbesondere bei kerntechnischen<br />

„Newcomern“ wie z. B. Bangladesch,<br />

Türkei, VAE) erfordert ein aus<br />

deutscher Sicht ausreichendes Niveau<br />

sowie die Schließung noch vorhandener<br />

Lücken im internationalen Regelwerk.<br />

Außerdem ist festzustellen, dass<br />

aufgrund der begrenzten Laufzeit der<br />

deutschen Kernkraftwerke bis Ende<br />

2022 eine abnehmende Bereitschaft<br />

seitens der Betreiber und Gutachter<br />

absehbar und auch bereits erkennbar<br />

ist, Experten in internationale Regelgremien<br />

zu entsenden. In Abstimmung<br />

zwischen BMU und dem KTA-<br />

Präsidium ist daher vorgesehen, dies<br />

– soweit möglich – durch eine verstärkte<br />

Aktivität von Mitarbeitern der<br />

Energy Policy, Economy and Law<br />

German Secretarial Management ISO/TC 85/SC 6 Reactor Technology ı Janine Winkler and Michael Petri


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

KTA-GS und durch Entsendung von<br />

weiteren Experten im Auftrag des<br />

BMU aufzufangen.<br />

1 Zusammenhang<br />

zwischen KTA-Regeln,<br />

internationalen und<br />

nationalen Normen<br />

Der Zusammenhang zwischen technischen<br />

Normen, wie den Regeln des<br />

Kerntechnischen Ausschusses (KTA),<br />

und DIN-Normen und den einschlägigen<br />

Gesetzen und Verordnungen<br />

ist rechtlich begründet (siehe<br />

Abbildung 1). Während das Atomgesetz<br />

[1] und das Strahlenschutzgesetz<br />

[2] Hoheitsaufgaben des<br />

Staates sind, liegt die Erarbeitung von<br />

technischen Normen in der Selbstverwaltung<br />

der Wirtschaft. Dies bedeutet<br />

zum einen, dass die staatlichen Vorgaben<br />

meist einen sehr viel geringeren<br />

Detaillierungsgrad aufweisen und<br />

somit auf weiterführende Dokumente<br />

verweisen müssen (wie z.B. auf DIN-<br />

Normen), und zum anderen, dass,<br />

obwohl der Detaillierungsgrad größer<br />

ist, technische Normen wesentlich<br />

flexibler hinsichtlich der Erarbeitung<br />

und Überarbeitung sind. Die Erarbeitung<br />

von technischen Normen ist ein<br />

offener Prozess (siehe auch Abschnitt<br />

4), wobei die Beteiligung einer<br />

breiteren Öffentlichkeit durch Einspruchsverfahren<br />

erfolgt [3].<br />

Es wird in 22 DIN-Normen auf<br />

KTA-Regeln verwiesen, während andererseits<br />

in 67 KTA-Regeln auf<br />

DIN-Normen verwiesen wird. Diese<br />

Zahlen verdeutlichen die enge Verflechtung<br />

von DIN-Normen und KTA-<br />

Regeln und zeigen auch, dass DIN-<br />

Normen praxisrelevant für den Alltag<br />

in kerntechnischen Anlagen sind. Als<br />

Beispiel kann hier die KTA 3201.4 [4]<br />

aufgeführt werden, in welcher nicht<br />

weniger als 14-mal auf DIN-Normen<br />

verwiesen wird. Formulierungen wie<br />

„nach dem Stand von Wissenschaft<br />

und Technik“ deuten auf weitere Verweise<br />

auf Normen hin, werden aber<br />

nicht explizit angegeben.<br />

Zwischen dem KTA und DIN e. V.<br />

besteht ein Vertrag [5], der genau<br />

regelt, wer welche technischen Regeln<br />

aufstellt, wobei es unter § 2 heißt „das<br />

DIN erarbeitet ferner solche Normen,<br />

die das Regelwerk des KTA außerhalb<br />

des sicherheitstechnischen Bereiches<br />

ergänzt“. Ein für die internationalen<br />

Normungsaktivitäten wichtiger Aspekt<br />

wird unter § 9 der Vereinbarung angesprochen<br />

und besagt „das DIN vertritt<br />

die Fachmeinung des KTA auf internationaler<br />

und europäischer Ebene“.<br />

Die Erarbeitung von neuen KTA-<br />

Regeln und DIN-Normen im Bereich<br />

| | Abb. 1.<br />

Pyramide.<br />

der Kernreaktoren ist allerdings stark<br />

rückläufig, was auch Auswirkungen<br />

auf die Beteiligung in den jeweiligen<br />

Gremien hat. Eine Fortschreibung<br />

bzw. Aktualisierung wird somit immer<br />

schwieriger. Daher muss ein neuer<br />

Weg beschritten werden und der erarbeitete<br />

Stand in andere Normen und<br />

Regeln einfließen, die auch in Zukunft<br />

bearbeitet werden. Wie auch in<br />

anderen Bereichen außerhalb der<br />

Kerntechnik ist daher die Über führung<br />

in die internationale Normung eine<br />

Möglichkeit den erarbeiteten Stand<br />

von Wissenschaft und Technik zu<br />

erhalten und weiterzugeben (Abbildung<br />

2).<br />

2 Internationale<br />

Normungsarbeit<br />

des ISO/TC 85/SC 6<br />

Das ISO/TC 85/SC 6 Reactor technology<br />

ist zuständig für die Normung<br />

im Bereich Kernkraftwerke und<br />

Forschungsreaktoren. Der Geltungsbereich<br />

umfasst dabei Standortauswahl,<br />

Konstruktion, Bau, Betrieb<br />

und Stilllegung. Die Standortauswahl<br />

umfasst alle Arten von kerntechnischen<br />

Anlagen und alle Themen wie<br />

Hochwasser, seismische Gefahren<br />

usw. Forschungsreaktoren umfassen<br />

eine Vielzahl von Einrichtungen:<br />

Erzeugung von Neutronenstrahlen,<br />

Bestrahlung von Proben, Herstellung<br />

von Isotope (insbesondere Produktion<br />

für Nuklear medizin) und Testreaktoren<br />

oder Prototypen neuer Technologien.<br />

Die Normung im Bereich<br />

der Stilllegung beschränkt sich<br />

auf reaktorspezifische technische<br />

Themen.<br />

Die Erarbeitung der internationalen<br />

Normen des ISO/TC 85/SC 6<br />

findet in den einzelnen Arbeitsgruppen<br />

des SC 6 statt (Abbildung<br />

3). Die Abstimmung über Annahme<br />

und weiteres Vorgehen zu den<br />

| | Abb. 2.<br />

Ablösung nationaler Normung durch internationale und europäische<br />

Normen.<br />

internationalen Norm-Entwürfen<br />

findet im SC 6 selbst statt. Das SC 6<br />

arbeitet dabei weitgehend unabhängig<br />

vom übergeordneten ISO/TC<br />

85, mit welchem lediglich eine<br />

Koordinierung der Arbeiten stattfindet.<br />

Bezüglich einer engeren<br />

Zusam menarbeit ist insbesondere das<br />

SC 5 zu nennen, welches teilweise in<br />

gleichen Auf gabengebieten arbeitet,<br />

allerdings mit dem Kernthema des<br />

Brennstoffkreislaufes.<br />

Die Arbeitsgruppe 1 (Working<br />

Group 1 – WG 1) beschäftigt sich<br />

mit der Entwicklung, der Pflege und<br />

Förderung von Normen für Berechnungen,<br />

Analysen und Messungen<br />

zur Unterstützung der Reaktorkernphysik.<br />

Solche internationalen<br />

Normen liefern u. a. Kriterien für<br />

die Auswahl nuklearer Daten und<br />

com putergestützter Methoden; geeignete<br />

Benchmark-Problemspezifikationen<br />

zur Verifizierung der vom<br />

Reaktorkern verwendeten Berechnungs<br />

methoden, Kriterien für die<br />

Bewertung der Genauigkeit und der<br />

Anwendbarkeit von Datenmethoden;<br />

Methoden der Verifikation und der<br />

Abschätzung von Unsicherheiten. Die<br />

WG 1 wird von einem amerikanischen<br />

ENERGY POLICY, ECONOMY AND LAW 393<br />

Energy Policy, Economy and Law<br />

German Secretarial Management ISO/TC 85/SC 6 Reactor Technology ı Janine Winkler and Michael Petri


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

ENERGY POLICY, ECONOMY AND LAW 394<br />

| | Abb. 3.<br />

Struktur des Unterkomitees 6 im ISO/TC 85.<br />

Convenor geführt und bearbeitet<br />

derzeit 6 Projekte:<br />

• ISO/NP 19226 Determination of<br />

neutron fluence and displacement<br />

per atom (dpa) in reactor vessel<br />

and internals<br />

• ISO/NP 18<strong>07</strong>7 Reload Startup<br />

Physics Tests for Pressurized Water<br />

Reactors<br />

• ISO/DIS 10979 Identification of<br />

fuel assemblies for nuclear power<br />

reactors<br />

• ISO/AWI 23018 Group-Averaged<br />

Neutron and Gamma-Ray Cross<br />

Sections for Radiation Protection<br />

and Shielding Calculations for<br />

Nuclear Reactors<br />

• ISO/NP 23468 Determination<br />

of heavy water isotopic purity<br />

by Fourier Transform Infrared<br />

Spectroscopy<br />

• ISO/PWI 18156 Technical specification<br />

guide for decay heat computation<br />

codes in nuclear reactors<br />

Die Arbeitsgruppe 2 (WG 2) beschäftigt<br />

sich mit der Entwicklung, Pflege<br />

und Förderung von Normen für<br />

Auslegung, Konstruktion, Betrieb,<br />

Wartung, Nutzung und Stilllegung<br />

von Forschungs- und Testreaktoren.<br />

Die WG 2 wurde bislang ebenfalls<br />

von einem amerikanischen Convenor<br />

geführt, der diese Position letztes Jahr<br />

übernommen hat aber nicht weiter<br />

wahrnehmen kann. Dieses Jahr hat<br />

sich China bereit erklärt die Führung<br />

der Arbeitsgruppe 2 zu übernehmen,<br />

der vorgesehene Fokus der Arbeiten<br />

wird sich dann auf Fusionsreaktoren<br />

sowie Forschungsreaktoren für die<br />

Herstellung von Isotopen für die<br />

Nuklearmedizin richten. Die Arbeitsgruppe<br />

hat allerdings derzeit keine<br />

Projekte.<br />

Die Arbeitsgruppe 3 (WG 3)<br />

beschäftigt sich mit der Entwicklung,<br />

der Pflege und Förderung von Normen,<br />

die sich mit allen Themen zum Standort,<br />

Konstruktion, Betrieb und Stilllegung<br />

von Kernkraftwerken auseinander<br />

setzen. Der Betrieb umfasst<br />

dabei auch die Notaus rüstungen.<br />

Weiterhin werden inter nationale Normen<br />

für nicht- elek trischen Anwendungen<br />

und trans portable Kernreak toren<br />

erarbeitet. Die WG 3 wird durch einen<br />

französischen Convenor geführt und<br />

hat momentan mit 12 Projekten ein<br />

sehr anspruchsvolles Arbeits pensum.<br />

• ISO/DIS 18195 Method for the<br />

justification of fire partitioning in<br />

water cooled NPP<br />

• ISO/DIS 20890-1 In-service inspections<br />

for primary coolant<br />

circuit components of light water<br />

reactors – Part 1: Mechanized<br />

ultrasonic testing<br />

• ISO/DIS 20890-2 In-service inspections<br />

for primary coolant<br />

circuit components of light water<br />

reactors – Part 2: Magnetic particle<br />

and penetrant testing<br />

• ISO/DIS 20890-3 In-service inspections<br />

for primary coolant<br />

circuit components of light water<br />

reactors – Part 3: Hydrostatic<br />

testing<br />

• ISO/DIS 20890-4 In-service inspections<br />

for primary coolant<br />

circuit components of light water<br />

reactors – Part 4: Visual testing<br />

• ISO/DIS 20890-5 In-service inspections<br />

for primary coolant<br />

circuit components of light water<br />

reactors – Part 5: Eddy current<br />

testing of steam generator heating<br />

tubes<br />

• ISO/DIS 20890-6 In-service inspections<br />

for primary coolant<br />

circuit components of light water<br />

reactors – Part 6: Radiographic<br />

testing<br />

• ISO/CD 21146 Classification of<br />

Transients and Accidents for<br />

Pressurized Water Reactor<br />

• ISO/NP 23466 Design criteria for<br />

the thermal insulation of reactor<br />

coolant system main equipments<br />

and pipings of PWR nuclear power<br />

plants<br />

• ISO/NP 23467 Guidance of ice<br />

plug isolation technique for<br />

nuclear power station<br />

• ISO/PWI 18583 Technical Spe cifications<br />

for the connection of Mobile<br />

Equipments for Emergency Intervention<br />

on Nuclear Instal lation<br />

• ISO/PWI 19462 Criteria for Assessing<br />

Atmospheric Effects on the<br />

Ultimate Heat Sink<br />

In diesem Arbeitsprogramm sei<br />

insbesondere auf die Reihe ISO/DIS<br />

20890 hingewiesen, welche der erste<br />

deutsche Vorschlag im SC 6 ist und<br />

der deutschen Normenreihe DIN<br />

25435 in großen Teilen entspricht.<br />

Das vorhandene Arbeitsvolumen<br />

wird voraussichtlich weiter zunehmen,<br />

da ein Großteil der DIN-Normen<br />

und KTA-Regeln, die als Grundlage<br />

für die Erarbeitung entsprechender<br />

internationaler Normen geeignet<br />

sind, in den Aufgabenbereich der<br />

WG 3 fallen.<br />

Bis vor etwa 6 Jahren war das SC 6<br />

eher inaktiv, mit insgesamt 6 veröffentlichten<br />

Normen, von denen eine<br />

zurückgezogen wurde. Diese Normen<br />

wurden vor etwa 20 Jahren erarbeitet.<br />

Vor etwa 6 Jahren, nach den Reaktorunfällen<br />

von Fukushima, kam es zu<br />

einer Wiederbelebung. Das Sekretariat<br />

wurde in diesem Zeitraum durch<br />

die USA (ANSI) geführt. Im Jahr 2017<br />

und <strong>2018</strong> wurden 5 neue Normen erarbeitet<br />

und veröffentlicht, was zu<br />

einer Verdopplung der vorhandenen<br />

Normen im Arbeitsprogramm des SC<br />

6 geführt hat.<br />

Auf seiner Plenarsitzung in Helsinki<br />

hat das SC 6 weiterhin festgelegt,<br />

dass es eine Roadmap für die Ausrichtung<br />

seines zukünftigen Arbeitsprogrammes<br />

erstellen wird. Hierzu wird<br />

es im Rahmen der nächsten Sitzungswoche<br />

im Mai 2019 in Berlin einen<br />

Workshop geben, bei dem die Bedürfnisse<br />

der beteiligten Länder herausgearbeitet<br />

werden sollen. Weiterhin soll<br />

dann auch die Zusammenarbeit mit<br />

dem SC 5 sowie anderen Organisationen,<br />

wie IAEA, Europäische Kommission<br />

untersucht und systematisch<br />

aufgearbeitet werden.<br />

3 Deutsche<br />

Sekretariatsführung<br />

Im August 2017 hat ANSI mitgeteilt,<br />

dass sie das Sekretariat des SC 6 aus<br />

Energy Policy, Economy and Law<br />

German Secretarial Management ISO/TC 85/SC 6 Reactor Technology ı Janine Winkler and Michael Petri


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

kapazitiven Gründen abgeben wollen.<br />

Daraufhin hat das ISO/TC 85 eine<br />

Umfrage zur Neuvergabe des Sekretariats<br />

durchgeführt.<br />

Diese Umfrage hat DIN an seine<br />

interessierten Kreise im Fachbeirat<br />

„Kerntechnik und Strahlenschutz“<br />

weitergegeben. Seitens des BMU gab<br />

es großes Interesse, dieses Sekretariat<br />

aus strategischen Gründen zu besetzen.<br />

Eine Zusage der Finanzierung<br />

wurde ebenfalls ausgesprochen. Ziel<br />

des BMU ist es, ein Konzept zur<br />

Wahrung der Kompetenz durch die<br />

Mitarbeit und die Einbringung des<br />

deutschen Standes von Wissenschaft<br />

und Technik in verschiedene internationale<br />

Regelsetzungen umzusetzen.<br />

Die Motivation des BMU ist es,<br />

einen hohen Qualitätsstandard in den<br />

internationalen Regelwerken sicherzu<br />

stellen, der den nationalen sicherheitstechnischen<br />

Anforderungen in<br />

der Anwendung der friedlichen Kerntechnik<br />

und der sonstigen Anwendungen,<br />

wie z. B. Forschung, Strahlenschutz,<br />

Medizin etc. gerecht wird.<br />

Als erster Schritt soll daher die<br />

Sekretariatsführung durch DIN diesen<br />

hohen Standard bei den vorhandenen<br />

Projekten, neuen Vorschlägen für<br />

internationale Normen und den<br />

älteren ISO-Normen des SC 6 unterstützen.<br />

DIN hat sich daher um die<br />

Sekretariatsführung beworben und<br />

dieses nach einem positiven Beschluss<br />

des ISO Technical Management Board<br />

übernommen. Als nächster Schritt ist<br />

vorgesehen, in Zusammenarbeit mit<br />

der Geschäftsstelle des Kerntechnischen<br />

Ausschusses (KTA-GS) fehlende<br />

Standards in den Bereichen Hochwasserschutz,<br />

Seismik und Blitzschutz<br />

einzubringen und als internationale<br />

Normen zu etablieren. Weiterhin<br />

wird das BMU auch Experten<br />

von DIN unterstützen, welche sich in<br />

der internationalen Normung beteiligen<br />

um DIN-Normen im Bereich der<br />

Konstruktion, Betrieb und Konta mina<br />

tions überwachung/Freimessungen<br />

in die internationale Normung zu<br />

überführen.<br />

Ein weiteres Ziel des deutschen<br />

Sekretariats wird es sein, die Teilnahme<br />

der aktiven und passiven Mitglieder<br />

von ISO/TC 85/SC 6 in den<br />

Sitzungen und bei der Erarbeitung<br />

von Normen in den drei Arbeitsgruppen<br />

zu verbessern. Darüber<br />

hinaus soll die Zusammenarbeit<br />

innerhalb des ISO/TC 85 und die<br />

Verbindungen zu Organisationen<br />

außerhalb der ISO-Struktur, wie<br />

z. B. zu IAEA, aktiver gestaltet werden.<br />

Die Zusammenarbeit innerhalb<br />

des ISO/TC 85 mit den anderen<br />

| | Abb. 4.<br />

Sitzung des ISO/TC 85/SC 6/WG 3 im Mai <strong>2018</strong> in Helsinki.<br />

beiden Unterkomitees innerhalb von<br />

ISO/TC 85 und insbesondere mit<br />

ISO TC 85/SC 5, Nuclear installations,<br />

processes and technologies soll intensiviert<br />

werden. Weiterhin hat Deutschland<br />

die Unterkomitees SC 5 und SC 6<br />

2019 zur jährlichen Sitzung nach<br />

Berlin eingeladen, um die Idee einer<br />

engen Zusammenarbeit zu unterstützen<br />

(Abbildung 4).<br />

Das ISO/TMB hat weiterhin entschieden,<br />

dass DIN die Sekretariatsführung<br />

des SC 6 nicht alleine übernimmt,<br />

sondern dem Vorschlag von<br />

DIN folgend, zusammen mit China als<br />

twinning secretariat. Dies bedeutet,<br />

dass ein entwickeltes Land, welches<br />

sehr aktiv bei ISO ist und die ISO-<br />

Regeln beherrscht, ein sich entwickelndes<br />

Land, welches noch nicht<br />

so aktiv bei ISO ist und die ISO-Regeln<br />

nicht im Detail kennt, unterstützt.<br />

Beide Partner innerhalb des twinning<br />

secretariat müssen sich mittels<br />

einer Vereinbarung über die Aufgabenteilung<br />

verständigen. Das primäre<br />

Ziel eines twinning secretariat ist es,<br />

die Fähigkeit des sich entwickelnden<br />

Landes aufzubauen und die Teil nahme<br />

an der ISO-Arbeit zu ver bessern. Die<br />

Ziele bei einem twinning secretariat<br />

sollten daher auch die Ziele des<br />

Entwicklungslandes und seine nationalen<br />

Pläne sowie Strategien umfassen.<br />

Die twinning secretariat-<br />

Vereinbarung sollte daher einen kontinuierlichen<br />

Prozess der Einbindung<br />

und Beteiligung des Entwicklungslandes<br />

in die Sekretariatsführung<br />

abbilden, eine Nachverfolgung der<br />

vereinbarten Ziele enthalten und falls<br />

notwendig, Korrekturmaßnahmen in<br />

der Zusammenarbeit zulassen. Das Ergebnis<br />

des twinning secretariat sollte<br />

es sein, dass das Entwicklungsland<br />

nach der vereinbarten Zeit des twinnings<br />

die Fähigkeit aufgebaut hat, die<br />

Sekretariatsführung selbstständig und<br />

entsprechend den ISO- Regeln korrekt<br />

durchzuführen und hauptverantwortlich<br />

zu übernehmen.<br />

Für das deutsche Sekretariat hat<br />

dies den Vorteil, dass mit Laufe der<br />

Vertragszeit die administrative Last<br />

weniger wird und es sich verstärkt auf<br />

inhaltliche Aspekte und die Qualität<br />

der entstehenden Normen konzentrieren<br />

kann. Weiterhin ist dies ein<br />

hervorragendes Mittel zur Stärkung<br />

einer strategischen Partnerschaft mit<br />

China.<br />

Außerdem erhofft sich Deutschland<br />

durch die gemeinsame Partnerschaft<br />

eine erhöhte Beteiligung asiatischer<br />

Länder in der Erarbeitung von<br />

internationalen Normen im ISO/TC<br />

85/SC 6 sowie deren Akzeptanz und<br />

Anwendung.<br />

Das twinning ist für das ISO/TC<br />

85/SC 6 auf zwei Ebenen vorgesehen,<br />

d. h. es wird neben einer deutschen<br />

Sekretärin (Dipl.-Ing. (FH) Janine<br />

Winkler) einen chinesischen Co-<br />

Sekretär geben und neben dem deutschen<br />

Chairman (Dr. Michael Petri)<br />

eine Vize-Chair aus China. Zeitlich ist<br />

das twinning vorerst auf drei Jahre<br />

beschränkt, wobei eine Verlängerung<br />

um drei Jahre optional ist.<br />

4 Erarbeitung von<br />

internationalen Normen<br />

DIN vertritt die Normungsinteressen<br />

Deutschlands in der International<br />

Organization for Standardization<br />

(ISO). Dabei ist jedem internationalen<br />

Normungsgremium ein nationales<br />

Spiegelgremium bei DIN zugeordnet.<br />

Dieses nationale Spiegelgremium<br />

entscheidet über die aktive Mitarbeit<br />

auf internationaler Ebene, eruiert<br />

die deutsche Meinung und entsendet<br />

Experten in die weltweit tagenden<br />

internationalen Gremien, um die<br />

nationale Position zu vertreten<br />

oder – bei Projekten von besonderem<br />

nationalen Interesse – die ISO-<br />

Projektleitung zu übernehmen. Die<br />

ENERGY POLICY, ECONOMY AND LAW 395<br />

Energy Policy, Economy and Law<br />

German Secretarial Management ISO/TC 85/SC 6 Reactor Technology ı Janine Winkler and Michael Petri


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

ENERGY POLICY, ECONOMY AND LAW 396<br />

| | Abb. 5.<br />

Delegationsprinzip.<br />

nationalen Spiegelgremien entscheiden<br />

zusätzlich über die Übernahme<br />

internationaler Normen in das nationale<br />

Normenwerk, welche freiwillig<br />

ist.<br />

Die Erarbeitung der internationalen<br />

Normen vollzieht sich in den<br />

Technischen Komitees und deren<br />

Unterkomitees und Arbeitsgruppen.<br />

Alle ISO-Mitglieder haben das Recht,<br />

in jedem beliebigen Technischen<br />

Komitee (TC) oder Unterkomitee (SC)<br />

ihrer Organisation mitzuarbeiten<br />

( aktive Mitarbeit: P-Mitglieder, Mitwirkung<br />

als Beobachter: O – Mitglieder).<br />

Die Arbeit ist dezentralisiert; die<br />

Sekretariate dieser Gremien werden<br />

jeweils durch ein Mitglied betreut. Die<br />

Zentralsekretariate der ISO in Genf<br />

sind für folgende Aufgaben zuständig:<br />

Allgemeine Verwaltung, Unterstützung<br />

bei der Planung, Koordinierung<br />

der Facharbeit, Durchführung der<br />

Umfrage- und Annahmeverfahren<br />

und Veröffentlichung von internationalen<br />

Normen und anderen Publikationen,<br />

Betreuung der Organe außer<br />

der Technischen Komitees.<br />

Vorschläge für die Erarbeitung<br />

internationaler Normen (oder auch<br />

deren Überarbeitung oder Änderung)<br />

können von verschiedenen Seiten<br />

eingebracht werden. Erhält der Vorschlag<br />

ausreichende Unterstützung,<br />

wird er in das Arbeitsprogramm des<br />

TC oder SC aufgenommen. Zur Aufnahme<br />

ist eine einfache Mehrheit der<br />

P Mitglieder notwendig sowie eine<br />

Verpflichtungserklärung zur aktiven<br />

Mitarbeit von mindestens fünf – dem<br />

Vorschlag zustimmenden – P-Mitgliedern.<br />

Damit ist die Vorschlagsstufe<br />

(Proposal Stage) abgeschlossen.<br />

Ein TC oder SC kann auch vorläufige<br />

Norm-Projekte (Preliminary Work<br />

Items) in sein Arbeitsprogramm aufnehmen,<br />

die für eine Bearbeitung<br />

noch nicht reif sind. Sie werden auf<br />

einer Bereitschaftsstufe (Preliminary<br />

Stage) gehalten und vom Komitee<br />

regelmäßig auf ihre Bearbeitbarkeit<br />

hin überprüft.<br />

Die nächste Bearbeitungsstufe<br />

(Preparatory Stage) umfasst die<br />

Ausarbeitung eines Arbeitsentwurfes<br />

(Working Draft – WD). Dies geschieht<br />

normalerweise auf Arbeitsgruppenebene.<br />

Meist sind mehrere aufeinanderfolgende<br />

WD erforderlich, bis ein<br />

weitestgehend stabiles Arbeitsergebnis<br />

als Entwurfsvorschlag (Committee<br />

Draft – CD) registriert werden und in<br />

die nachfolgende Komiteestufe (Committee<br />

Stage) gehen kann.<br />

Auf der Komiteestufe wird das<br />

Dokument dem TC oder SC schriftlich<br />

zur Kommentierung unterbreitet. Die<br />

zuständige Arbeitsgruppe (Working<br />

Group – WG) sichtet die eingegangenen<br />

Kommentare und erarbeitet<br />

einen Vorschlag für das weitere Vorgehen.<br />

Der Beschluss zur Einreichung<br />

als internationaler Norm-Entwurf ist<br />

im Konsens zu fassen (Konsens gilt als<br />

erreicht, wenn keine Einwände gegen<br />

wesentliche Teile des Dokumentes<br />

aufrechterhalten werden; er bedingt<br />

nicht Einstimmigkeit).<br />

In der Umfragestufe (Enquiry<br />

Stage) wird der Internationale Norm-<br />

Entwurf (Draft International Standard<br />

– DIS) allen Mitgliedern von ISO<br />

zur Prüfung und Abstimmung (Ja,<br />

Nein, oder Enthaltung) innerhalb von<br />

fünf Monaten vorgelegt. Fachliche<br />

Kommentare können eingereicht<br />

werden; ihre Annahme darf bei einer<br />

Ja-Stimme aber nicht zur Bedingung<br />

gemacht werden. Ist der DIS für ein<br />

Mitglied in der vorliegenden Form<br />

nicht annehmbar, muss dieses deshalb<br />

mit Nein stimmen und die fachlichen<br />

Gründe dafür angeben. Die Annahme<br />

| | Abb. 6.<br />

Entstehung einer internationalen Norm.<br />

des DIS erfordert eine Zwei-Drittel-<br />

Mehrheit der P-Mitglieder des zuständigen<br />

TC oder SC und zugleich<br />

eine Drei-Viertel-Mehrheit aller abgegebenen<br />

Stimmen (ohne Enthaltungen).<br />

Nach Ablauf der Umfrage<br />

trifft der Vorsitzende des TC oder SC<br />

in Zusammenarbeit mit dem Sekretär<br />

und in Konsultation mit dem Zentralsekretariat<br />

die Entscheidung über das<br />

weitere Vorgehen und das Sekretariat<br />

erstellt einen Bericht über das Umfrageergebnis<br />

und die eingegangenen<br />

Kommentare. Es muss dabei versucht<br />

werden, auch die mit den Nein-<br />

Stimmen verbundenen Probleme zu<br />

lösen. Im Falle eines positiven Ergebnisses<br />

erarbeitet das Sekretariat mit<br />

der Unterstützung der zuständigen<br />

Arbeitsgruppe die endgültige Fassung.<br />

Für den Fall, dass keine einzige<br />

Nein-Stimme vorliegt, führt die<br />

Umfragestufe direkt zur Veröffentlichungsstufe<br />

(Publication Stage), ansonsten<br />

endet die Umfragestufe mit<br />

der Registrierung des Dokumentes<br />

als Internationaler Schluss-Entwurf<br />

durch das Zentralsekretariat.<br />

In der Annahmestufe (Approval<br />

Stage) wird der Internationale<br />

Schluss- Entwurf (Final Draft International<br />

Standard – FDIS) allen Mitgliedern<br />

von ISO zur Abstimmung<br />

innerhalb von zwei Monaten unterbreitet.<br />

In der Annahmestufe kann der<br />

Schluss-Entwurf sachlich nicht mehr<br />

geändert, sondern nur noch angenommen<br />

oder – mit entsprechender<br />

Begründung – abgelehnt werden.<br />

Die Veröffentlichungsstufe (Publication<br />

Stage) umfasst die abschließende<br />

Korrektur, Veröffentlichung<br />

und Verteilung der Norm durch das<br />

Zentralsekretariat. Die internationale<br />

Norm wird regelmäßig überprüft<br />

(Systematic Review – SR), wobei über<br />

ihren Fortbestand, eine Überarbeitung<br />

oder auch die Zurückziehung<br />

entschieden wird. Bei der ISO erfolgt<br />

dies spätestens nach jeweils fünf<br />

Energy Policy, Economy and Law<br />

German Secretarial Management ISO/TC 85/SC 6 Reactor Technology ı Janine Winkler and Michael Petri


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

Jahren. Falls die Überprüfung (SR)<br />

ergibt, dass die Norm aktualisiert<br />

werden muss, folgen die Schritte zur<br />

vollständigen Überarbeitung dem vorangehend<br />

geschilderten Arbeitsablauf<br />

für eine neue Norm.<br />

5 Schlussfolgerung<br />

Trotz der politischen Entscheidung<br />

Deutschlands aus der Kerntechnik<br />

auszuscheiden, wird Deutschland<br />

auf Initiative des BMU ein weiteres<br />

internationales Normungsgremium<br />

führend übernehmen. Damit soll auch<br />

in Zukunft ein hohes Niveau der<br />

nuklearen Sicherheit bei der friedlichen<br />

Nutzung der Kernenergie in der<br />

Welt unterstützt und sichergestellt<br />

werden. Im Laufe der nächsten Jahre<br />

wird das BMU – über die Sekretariatsführung<br />

hinaus – die Mitarbeit von<br />

deutschen Experten an internationalen<br />

Projekten unterstützen. Neben<br />

der Fortführung der Regelwerksarbeit<br />

im KTA werden damit auch die dazugehörigen<br />

nationalen und internationalen<br />

Normungsarbeiten unterstützt.<br />

Literatur<br />

[1] Atomgesetz in der Fassung der<br />

Bekanntmachung vom 15. Juli 1985<br />

(BGBl. I S. 1565), das zuletzt durch<br />

Artikel 2 Absatz 2 des Gesetzes vom<br />

20. Juli 2017 (BGBl. I S. 2808) geändert<br />

worden ist<br />

[2] SStrahlenschutzgesetz vom 27. Juni<br />

2017 (BGBl. S. 1966), das durch Artikel<br />

2 G des Gesetzes vom 27. Juni 2017<br />

(BGBl. S. 1966) geändert worden ist.<br />

https://goo.gl/qhvNr5<br />

[3] DIN 820-4:2013-06, Normungsarbeit –<br />

Teil 4: Geschäftsgang<br />

[4] KTA 3201.4, Komponenten des Primärkreises<br />

von Leichtwasserreaktoren Teil<br />

4: Wiederkehrende Prüfungen und<br />

Betriebsüberwachung in der Fassung<br />

6/99<br />

[5] DER KERNTECHNISCHE AUSSCHUSS -<br />

Grundlagen und Verfahren – KTA-<br />

GS-63, Anhang E Vereinbarung<br />

zwischen dem KTA und dem DIN<br />

www.kta-gs.de<br />

Authors<br />

Janine Winkler<br />

Dr. Michael Petri<br />

Senior-Projektmanagerin<br />

DIN-Normenausschuss<br />

Materialprüfung (NMP)<br />

Burggrafenstraße 6<br />

1<strong>07</strong>87 Berlin<br />

397<br />

ENVIRONMENT AND SAFETY<br />

Thermal Hydraulic Analysis of the<br />

Convective Heat Transfer of an<br />

Air-cooled BWR Spent Fuel Assembly<br />

Christine Partmann, Christoph Schuster and Antonio Hurtado<br />

Since the reactor accident in Fukushima Daiichi, the vulnerability of spent fuel pools (SFP) is more focused in nuclear<br />

safety research. In case of a structural damage of the SFP through an external event with a loss of coolant, the coolability<br />

of the spent nuclear fuel is endangered. If the pool is completely drained, the fuel assemblies (FA) are fully uncovered<br />

and only cooled by air. A sufficient decay heat transfer depends on the arising air mass flow from the containment<br />

through the spent FA from bottom to top (chimney effect). Beside analytical approximations from the U.S. Nuclear<br />

Regulatory Commission (NRC) that are partially not publicly accessible only little experimental data about loss of<br />

coolant accidents in SFP exist.<br />

Revised version of a<br />

paper presented at<br />

the Annual Meeting<br />

of Nuclear Technology<br />

(AMNT <strong>2018</strong>), Berlin,<br />

Germany.<br />

This paper presents the experimental<br />

findings about the convective heat<br />

transfer of a boiling water reactor<br />

(BWR) spent FA under the absence of<br />

water. These studies are performed<br />

within the joint project SINABEL that<br />

is funded by the German Federal<br />

Ministry of Education and Research to<br />

investigate the thermal hydraulics of<br />

selected accident scenarios in SFP<br />

experimentally and numerically.<br />

For the experimental investigation,<br />

the test facility ALADIN was build up<br />

in 2016. This mock-up is a full-scale<br />

electrically heated 10x10 rod bundle<br />

surrounded by additional heated rods<br />

to simulate the surrounding and to<br />

adjust nearly adiabatic boundary conditions.<br />

The rod bundle is equipped<br />

with a unique 3-D net of thermocouples<br />

that allows the observation of<br />

the cladding temperature distribution<br />

and temperature development combined<br />

with filling level measurement<br />

and video monitoring. Different experiments<br />

at single rod powers<br />

between (20-100) W were conducted.<br />

The results show that the convective<br />

heat transfer of a BWR FA that<br />

is only cooled by air is strongly inhibited.<br />

Inside the FA channel where<br />

axial flow is not appreciable, the entire<br />

heat has to be transferred in radial<br />

direction requiring large temperature<br />

differences.<br />

1 Introduction<br />

Spent nuclear fuel assemblies (FA)<br />

has to be stored in spent fuel pools<br />

(SFP) after their last operation cycle<br />

in the reactor. The decay heat arising<br />

from the decay of the fission products<br />

has to be removed from the SFP by<br />

active systems during the long-term<br />

storage. In case of a system failure<br />

or a loss of integrity of the SFP, a<br />

boil-off or a partial drain-down<br />

scenario can be postulated. Under<br />

these conditions the FA get exposed<br />

to the air of the containment. The conservative<br />

approach is a single FA in the<br />

middle of the SFP surrounded by other<br />

FA of the same temperature. Heat<br />

can be dissipated only in axial<br />

direction. Crossflows are not possible<br />

because of the design of a boiling<br />

water reactor (BWR) FA especially in<br />

case of the application of high-density<br />

racks. The temperature limit up to<br />

which the integrity of the cladding<br />

is guaranteed depends on the atmosphere,<br />

the cladding material, individual<br />

cladding characteristics and the<br />

accident sequences [1, 2].<br />

In publications, a complete loss of<br />

coolant with a free bottom nozzle can<br />

be found as the ultimate benchmark of<br />

the coolability of FA. Partial draindown<br />

scenarios with a blockade at the<br />

bottom play a minor role [3].<br />

The phenomenology and quantity<br />

of arising flow conditions that occur<br />

Environment and Safety<br />

Thermal Hydraulic Analysis of the Convective Heat Transfer of an Air-cooled BWR Spent Fuel Assembly ı Christine Partmann, Christoph Schuster and Antonio Hurtado


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

ENVIRONMENT AND SAFETY 398<br />

parameter test facility ALADIN SFP (real plant)<br />

pressure 0.1 MPa 0.1 MPa<br />

maximum power 350 W/rod 200 W/rod<br />

(2 d after reactor shutdown)<br />

heated length<br />

of the rods<br />

inside and around the FA during<br />

air-cooling conditions are focus of<br />

this paper. Therefore, experimental<br />

investigations are conducted at the<br />

test facility ALADIN at Technische<br />

Universität Dresden (TUD) within<br />

the joint project SINABEL. The test<br />

facility ALADIN simulates a generic<br />

full scale BWR FA in a SFP under<br />

accident conditions. The experiments<br />

serves for a better understanding of<br />

the heat transport phenomena in<br />

a FA and their dependencies during<br />

air-cooling conditions.<br />

2 Experimental<br />

investigation<br />

For about 30 years, there have<br />

been investigations at the Chair of<br />

Hydrogen and Nuclear Energy, TUD<br />

to study the safety of BWR. Since<br />

20<strong>07</strong>, the safety of BWR FA inside<br />

SFP is more focused. Vattenfall<br />

Europe Nuclear Energy GmbH initiated<br />

first experiments that were carried<br />

out by TUD at the test facilities<br />

ADELA I (20<strong>07</strong>-2010) and ADELA II<br />

3,600 mm 3,760 mm<br />

(depending on the manufacturer)<br />

cladding material stainless steel Zircaloy<br />

full height<br />

outer dimensions<br />

4,748 mm<br />

350 mm x 350 mm<br />

(plus 70 mm insulation)<br />

| | Tab. 1.<br />

Technical data of the test facility ALADIN in comparison to a SFP (real plant).<br />

(2010-2013). Beside boil-off experiments,<br />

air- cooling experiments were<br />

conducted.<br />

The test facility ADELA-I simulated<br />

a part of a BWR FA with a 3x3<br />

elec trically heated rod bundle with<br />

one additional heater. The experiments<br />

showed great dependence of<br />

the axial temperature profile on the<br />

entering airflow in the upper region<br />

of the rod bundle. Complex flow<br />

conditions could not be studied in<br />

detail [4].<br />

The enhanced test facility ADELA-II<br />

investigated a quarter of a BWR FA.<br />

It consisted of a 5x5 rod bundle<br />

with 8 additional heaters. The experiments<br />

showed the influence of the<br />

convection flows inside the test facility<br />

in dependence of the depth of the test<br />

facility. Significant cooling effects of<br />

ambient air at the top worsening to<br />

the bottom were observed. Consequently,<br />

heat was transferred in radial<br />

direction to the surrounding by<br />

conduction leading to specific axial<br />

heating profiles [5].<br />

2.1 Test facility ALADIN<br />

The test facility ALADIN was designed<br />

to simulate a full FA inside a SFP by<br />

taking the heat transfer mechanisms<br />

with the surrounding into account.<br />

Therefore, the geometric boundary<br />

conditions of a generic BWR FA were<br />

adopted in nearly original scale.<br />

Experiments were conducted under<br />

atmospheric pressure. Plant conditions<br />

shortly after reactor shutdown<br />

until years afterwards can be simulated<br />

with a continuously adjustable<br />

power up to 350 W per rod. The main<br />

technical data is listed in Table 1.<br />

Main component is a central electrically<br />

heated rod bundle consisting<br />

of 96 heating rods in a square arrangement<br />

positioned in an inner channel.<br />

In the outer channel 44 additional<br />

heating rods represent neighboring<br />

FA in the SFP. All channels are connected<br />

hydraulically to each other<br />

at the bottom and top. The outer<br />

surface of the test facility is thermally<br />

shielded by a microporous insulation<br />

with a total width of 70 mm. Simplified<br />

views of the test facility are given<br />

in Figure 1 and Figure 2.<br />

The power supply of the heating<br />

rods is ensured via 13 individually adjustable<br />

power supply units. Hence, it<br />

is possible to create different radial<br />

power profiles. In recent experiments,<br />

a constant profile was chosen due to<br />

low importance of a specific radial<br />

profile. The embossed axial power<br />

distribution of every rod takes the<br />

burn-up of the fuel rods into account<br />

(Figure 3).<br />

To understand the thermal<br />

hydraulic behavior inside the test<br />

facility during the experiments,<br />

| | Fig. 1.<br />

Simplified sectional view of the test facility ALADIN.<br />

| | Fig. 2.<br />

Simplified longitudinal view of the test facility<br />

ALADIN and axial measuring planes.<br />

Environment and Safety<br />

Thermal Hydraulic Analysis of the Convective Heat Transfer of an Air-cooled BWR Spent Fuel Assembly ı Christine Partmann, Christoph Schuster and Antonio Hurtado


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

measuring<br />

plane (level)<br />

position from bottom<br />

to top in mm<br />

| | Tab. 2.<br />

Arrangement of the instrumentation of ALADIN.<br />

cladding and wall surface temperatures<br />

are measured with 216 thermocouples<br />

on 12 different elevations<br />

thereof 125 in the rod bundle on 10<br />

elevations. Inside the test facility,<br />

thermocouples with a diameter of 0.5<br />

mm are used for minimal- intrusiveness<br />

and good temporal resolution.<br />

On the outside, the use of thermocouples<br />

with a diameter of 1 mm is<br />

sufficient. The probe tips were fixed<br />

under 0.05 mm point welded sheets of<br />

metal. The arrangement of the instrumentation<br />

is listed in Table 2.<br />

The temperature signals were<br />

wired with two solid-state multi plexer<br />

cards with cold junction compensation<br />

and a 26-bit resolution digital<br />

multimeter. Due to the large amount<br />

of measuring points, the time step for<br />

a complete measurement is 6.5 s. The<br />

chosen scan interval is 10 s. The maximum<br />

error including the uncertainty<br />

of the thermocouple is about ±2.5 K.<br />

2.2 Experimental set-up<br />

The heat transfer mechanisms of an<br />

air-cooled FA half a year after reactor<br />

shutdown are investigated by a power<br />

supply of 20 W per rod. Two experiments<br />

are presented:<br />

• Experiment I (exp. 1) simulates a<br />

completely drained SFP. For this<br />

purpose, the test facility is completely<br />

drained.<br />

• Experiment II (exp. 2) represents<br />

the accident scenario of a partialdrain<br />

down with a minimum<br />

blockade at the bottom. Therefore,<br />

the hydraulic connection between<br />

the inner and the outer channel at<br />

the bottom of the test facility is<br />

locked by a water level of 280 mm.<br />

In both scenarios, the test facility is<br />

open at the top and connected to<br />

T cladding<br />

1<br />

T wall_inside 2 T wall_outside<br />

3<br />

1 384 x x x<br />

2 784 x x x<br />

3 1,184 x x x<br />

4 1,584 x x x<br />

5 1,984 x x x<br />

6 2,384 x x x<br />

7 2,784 x x x<br />

8 3,184 x x x<br />

9 3,584 x x x<br />

10 3,984 x x x<br />

11 4,284 x x<br />

12 4,584 x<br />

ambient air. The experiments are<br />

limited to maximum cladding temperatures<br />

of 450 °C due to maximum<br />

operation temperatures of the heating<br />

rods.<br />

3 Results and discussion<br />

3.1 Results of experiment I<br />

In experiment I, the rod bundle heats<br />

up to a maximum cladding temperature<br />

of 427 °C measured at the elevation<br />

of 1,984 mm on measuring plane<br />

5. The experiment was stopped<br />

after 13.5 h hours with a maximum<br />

cladding temperature increase of at<br />

least 3 K/h.<br />

In Figure 4, the axial temperature<br />

profiles of the hottest rod inside the<br />

rod bundle are presented for different<br />

test durations. The dashed line represents<br />

the power profile of a single rod.<br />

The profiles illustrate the heat up of<br />

the cladding and the similarity to the<br />

linear power profile. The comparison<br />

of the temperature profiles with<br />

regard to the power profile shows a<br />

continuously increasing warming in<br />

the lower half of the test facility by<br />

| | Fig. 4.<br />

Axial temperature profiles at different test durations at 20 W/rod (exp. I).<br />

| | Fig. 3.<br />

Axial power distribution of a single rod to simulate the burn-up.<br />

contrast with the upper part. That<br />

indicates a formation of a flow stagnation<br />

region in that area of the rod<br />

bundle. In the upper part, a better<br />

heat dissipation due to convection is<br />

obvious. The air flowing upwards is in<br />

interaction with the air flowing<br />

downwards.<br />

The radial cladding temperature<br />

distributions of the quarter at the<br />

elevation of 2,784 mm (measuring<br />

plane 7) and 3,184 mm (measuring<br />

plane 8) at the end of the experiment<br />

are pictured in Figure 5. Each rod<br />

is instrumented with at least one<br />

thermocouple at each plane whereby<br />

the average temperature distribution<br />

is shown. Both temperature distributions<br />

are non-uniform with a<br />

temperature maximum towards the<br />

center of the test facility. The maximum<br />

temperature difference between<br />

the hottest and coldest rod is about<br />

82 K at level 7 and about 73 K at level<br />

8. It can be concluded that the radial<br />

heat transport is very low and therefore<br />

the coolabilty of the inner rods is<br />

not sufficiently secured.<br />

In Figure 6, axial temperature<br />

differences of the hottest and the<br />

coldest rod inside the bundle after 6 h,<br />

9 h and 13.5 h are compared. The<br />

apparent constant differences per<br />

elevation indicate a constant radial<br />

heat transport inside the rod bundle at<br />

the analyzed test times.<br />

1) surface of the rods<br />

2) surface of the inner<br />

channel inside the<br />

test facility<br />

3) outer surface of the<br />

test facility (plus<br />

insulation)<br />

ENVIRONMENT AND SAFETY 399<br />

Environment and Safety<br />

Thermal Hydraulic Analysis of the Convective Heat Transfer of an Air-cooled BWR Spent Fuel Assembly ı Christine Partmann, Christoph Schuster and Antonio Hurtado


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

ENVIRONMENT AND SAFETY 400<br />

| | Fig. 5.<br />

Radial cladding temperature distribution after 13.5 h (exp. I).<br />

| | Fig. 6.<br />

Axial temperature differences of the hottest and coldest rod after 6 h, 9 h and 13.5 h at 20 W/rod (exp. I).<br />

3.2 Comparison of the<br />

experimental results<br />

of experiment I with<br />

those of experiment II<br />

For a better understanding of the heat<br />

transfer mechanisms, the experiment<br />

I with the opened bottom connection<br />

is compared to experiment II with the<br />

flow blockade. The cladding temperatures<br />

of the hottest rod inside the rod<br />

bundle and the temperatures of the<br />

outer surface of the inner channel<br />

were analyzed in Figure 7. The rod<br />

bundle is shorter than the inner channel<br />

and ends at a height of 4,035 mm.<br />

Hence, there is no measurement<br />

point above this elevation for the rod<br />

bundle. In the lower and in the upper<br />

region, differences between the temperature<br />

profiles of both experiments<br />

can be seen. In experiment I, the rod<br />

temperatures in the region from<br />

bottom to 2,500 mm are lower compared<br />

to the rod temperatures of<br />

experiment II. Conversely, the temperatures<br />

in the upper part are higher<br />

in experiment I compared to experiment<br />

II. This is evidence for a chimney<br />

effect inside the bundle. Air heated<br />

inside the bundle flows upward, and<br />

colder air of the outer channel is<br />

forced to flow through the bottom<br />

connection inside the rod bundle. In<br />

experiment II, a stagnation region is<br />

formed in the lower part. Ambient air<br />

could only interact in the upper and<br />

middle region of the facility.<br />

4 Conclusion and outlook<br />

In the special case of a complete or a<br />

partial drain-down scenario, decay<br />

heat has to be removed from the FA by<br />

air-cooling. The flow characteristics<br />

and temperature progression in the<br />

assemblies are not investigated in<br />

detail especially not experimentally.<br />

Therefore, experimental tests are<br />

under way within the joint project<br />

SINABEL. Experiments with a rod<br />

power half a year after shutdown are<br />

presented. The investigation shows<br />

that there are huge radial temperature<br />

differences inside the bundle itself.<br />

This indicates, that a sufficient heat<br />

transfer inside a BWR FA is not possible<br />

although the cooling outside is high<br />

enough. Heat can only be transferred<br />

in axial direction. In this event, a<br />

blockade at the bottom of a FA has an<br />

influence on the convection flows inside<br />

the rod bundle. However, these<br />

convection flows only lead to opposite<br />

temperature changes in the lower and<br />

upper part of the rod bundle and has<br />

no significant effect on the maximum<br />

temperature in the investigated range<br />

up to cladding temperatures of 450 °C.<br />

The analysis of the heat transfer<br />

mechanism of BWR FA shortly after<br />

reactor shutdown up to half a year<br />

are under way and will give further<br />

information of these effects and their<br />

dependencies. A grid sensor for combined<br />

temperature and flow velocity<br />

measurement will be inserted in a<br />

quarter of the rod bundle to detect the<br />

flow velocities and their changes over<br />

the test time and at different rod<br />

powers. By modelling the entire FA<br />

structure in original scale with<br />

additional heaters to adjust nearly<br />

adiabatic boundary conditions it will<br />

be possible to make improved predictions<br />

about the cladding temperature<br />

development of a FA in case of<br />

air-cooling conditions. In combination<br />

with numerical investigations with<br />

CFD methods and integral codes, a<br />

significant improvement in this field<br />

of research can be expected. For this<br />

purpose, further publications with<br />

additional insights will follow.<br />

| | Fig. 7.<br />

Axial temperature profiles of the “inner channel” and “rod” after 13.5 h and axial temperature differences (exp. I/II).<br />

Acknowledgement<br />

This work is part of the research<br />

project “SINABEL” and is sponsored<br />

by the German Federal Ministry of<br />

Education and Research (BMBF) under<br />

the contract number 02NUK027A.<br />

Responsibility for the content of this<br />

paper lies with the authors.<br />

Environment and Safety<br />

Thermal Hydraulic Analysis of the Convective Heat Transfer of an Air-cooled BWR Spent Fuel Assembly ı Christine Partmann, Christoph Schuster and Antonio Hurtado


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

References<br />

[1] Smith, C.W.: Calculated fuel perforation<br />

temperatures: commercial power reactor<br />

fuels, NEDO-10093, September 1969.<br />

[2] Nourbakhsh, H.P. et al.: Analysis of<br />

spent fuel heatup following loss of<br />

water in a spent fuel pool, NUREG/<br />

CR-6441, Upton: Brookhaven National<br />

Laboratory, March 2002.<br />

[3] Benjamin, A. S. et al.: Spent fuel heatup<br />

following loss of water during storage,<br />

NUREG/CR–0649, US Nuclear<br />

Regulatory Commission, Washington<br />

DC, 1979.<br />

[4] Schuster, C. et al.: Experimental investigation<br />

of the rod load in an evaporating<br />

spent fuel pool, Proceedings on Annual<br />

Meeting on Nuclear Technology, Berlin,<br />

Germany, 20<strong>07</strong>.<br />

[5] Schulz, S.; Schuster, C.; Hurtado, A.:<br />

Convective heat transfer in a semiclosed<br />

BWR-fuel assembly in absence of<br />

water, Nuclear Engineering and Design,<br />

Volume 272, 2014, Pages 36-44, ISSIV<br />

0029-5493<br />

Authors<br />

Further Development of a Thermal-<br />

Hydraulics Two-Phase Flow Tool<br />

Verónica Jáuregui Chávez, Uwe Imke, Javier Jiménez and V.H. Sánchez-Espinoza<br />

Dipl.-Ing. Christine Partmann<br />

Dr.-Ing. Christoph Schuster<br />

Prof. Dr.-Ing. habil. Antonio Hurtado<br />

Technische Universität Dresden<br />

Institute of Power Engineering<br />

Chair of Hydrogen and Nuclear<br />

Energy<br />

01062 Dresden, Germany<br />

401<br />

OPERATION AND NEW BUILD<br />

The numerical simulation tool TWOPORFLOW is under development at the Institute for Neutron Physics and Reactor<br />

Technology (INR) of the Karlsruhe Institute of Technology (KIT). TWOPORFLOW is a thermal-hydraulics code that is<br />

able to simulate single- and two-phase flow in a structured or unstructured porous medium using a flexible 3-D Cartesian<br />

geometry. It has the capability to simulate simple 1-D geometries (like heated pipes), fuel assemblies resolving the<br />

sub-channel flow between rods or a whole nuclear core using a coarse mesh. The code uses six conservation equations<br />

in order to describe the coupled flow of steam and liquid. Several closure correlations are implemented to model the<br />

heat transfer between solid and coolant, phase change, wall friction as well as the liquid-vapor momentum coupling.<br />

Originally, TWOPORFLOW was used to calculate the flow and heat transfer in micro-channel heat exchangers. The<br />

main purpose of this work is the extension, improvement and validation of TWOPORFLOW in order to simulate the<br />

thermal-hydraulic behavior of Boiling Water Reactor (BWR) cores. For that aim, the code needs some additional<br />

empirical models. In particular, a turbulent lateral mixing model, and a void drift model have been implemented, tested<br />

and validated, adopting relevant tests found in the literature. Regarding reactor conditions, the BFBT critical power<br />

bundle experiments were selected for the validation.<br />

1 Introduction<br />

TWOPORFLOW is a thermal- hydraulic<br />

code based on a porous media<br />

approach to simulate single and twophase<br />

flow in 3D Cartesian coordinates.<br />

The time dependent mass,<br />

momentum and energy conservation<br />

equations for each fluid are solved<br />

with a semi-implicit continuous<br />

Eulerian type method. TWOPOR-<br />

FLOW was originally developed for<br />

the simulation of thermal-hydraulic<br />

phenomena inside micro-channels [1]<br />

[2]. However, the code has been<br />

recently modernized and adapted to<br />

be able to describe thermal-hydraulic<br />

phenomena occurring in Light Water<br />

Reactors (LWRs), specifically BWRs<br />

[3].<br />

2 TWOPORFLOW<br />

capabilities and<br />

main features<br />

TWOPORFLOW is capable to solve<br />

transient or steady state problems in<br />

reactor cores or RPV with a flexible<br />

3D Cartesian geometry which can be<br />

used to represent sub-channels, fuel<br />

assemblies, or even the whole core.<br />

The rod centered and the coolant centered<br />

approaches are available for<br />

sub- channel simulations. TWOPOR-<br />

FLOW uses a system of six conservation<br />

equations. The mass conservation<br />

equations of the two phases are given<br />

by the following equations:<br />

<br />

<br />

(1)<br />

(2)<br />

(3)<br />

The source term Γ I describes the rate<br />

of evaporation or condensation at the<br />

liquid-vapor interface.<br />

The momentum equations are used<br />

in non-conservative form as follows:<br />

<br />

(4)<br />

<br />

(5)<br />

For energy conservation equations,<br />

the internal energy (e) is used as the<br />

main variable:<br />

(6)<br />

(7)<br />

TWOPORFLOW has additional models<br />

to close the system of conservation<br />

equations, like solid-coolant heat<br />

transfer, interphase heat exchange,<br />

empirical correlations for wall<br />

friction, empirical correlations for<br />

Operation and New Build<br />

Further Development of a Thermal- Hydraulics Two-Phase Flow Tool ı Verónica Jáuregui Chávez, Uwe Imke, Javier Jiménez and V.H. Sánchez-Espinoza


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

OPERATION AND NEW BUILD 402<br />

interphase friction and liquid-vapor<br />

momentum coupling. However, some<br />

models need to be added or improved.<br />

For example, turbulent lateral mixing,<br />

void drift and critical heat flux (CHF)<br />

as well as the post-CHF models. In the<br />

next sections the addition of turbulent<br />

viscosity, void dispersion and turbulent<br />

conductivity, as well as the results<br />

of the validation of these models are<br />

presented.<br />

3 Improvement of physical<br />

models<br />

3.1 Turbulent viscosity<br />

To describe the effect of the turbulent<br />

flow between sub-channels in the<br />

momentum equations a simple algebraic<br />

equation approach is chosen.<br />

According to this approximation, the<br />

turbulent flow can be simulated as a<br />

pseudo fluid having an effective<br />

viscosity (μ), which is the result from<br />

the addition of the molecular and the<br />

turbulent viscosities. This extension is<br />

based on a mixing coefficient (β) which<br />

was determined experi mentally [4].<br />

Such simple model does not account<br />

for the details of turbulence, but it<br />

describes the general mixing behavior<br />

between sub-channels leading to the<br />

following equation for total viscosity.<br />

μ = μ mol + μ tur (8)<br />

μ tur = βρVl (9)<br />

eddy diffusivity. In this work the value<br />

of 0.9 is used [7].<br />

<br />

(12)<br />

The turbulent conductivity is added to<br />

the thermal conductivity of the fluid<br />

and affects directly the conductivity<br />

terms in equations (6) and (7).<br />

4 Validation<br />

(13)<br />

4.1 NUPEC PSBT stationary<br />

temperature tests (thermal<br />

mixing)<br />

To validate the implementation of the<br />

turbulent-viscosity and conductivity,<br />

nine tests of the Exercise 1 Phase II<br />

“Steady State Fluid Temperature”<br />

from the NUPEC PSBT benchmark [8]<br />

have been used. The boundary conditions<br />

of the tests are:<br />

• Outlet pressure: 4.92 to 16.58 MPa<br />

• Inlet mass flow: 1.3 to 11.52 kg/s<br />

• Inlet temperature : 86 to 289.2 °C<br />

• Bundle power: 0.4 to 3.44 MW<br />

The quoted measurement error for the<br />

outlet temperatures is 1°C [8].<br />

The tests consist of a 5x5 rod<br />

assembly with constant axial power<br />

distribution. The PSBT benchmark<br />

uses the rod power map shown in<br />

Figure 1.<br />

1.00 1.00 0.25 0.25 0.25<br />

1.00 1.00 1.00 0.25 0.25<br />

1.00 1.00 0.25 0.25 0.25<br />

1.00 1.00 1.00 0.25 0.25<br />

1.00 1.00 0.25 0.25 0.25<br />

| | Fig. 1.<br />

Lateral power distribution PSBT tests.<br />

The meshing in TWOPORFLOW is<br />

constructed by a coolant centered<br />

sub-channel approach, resulting in an<br />

arrangement of 6x6 sub-channels in<br />

directions X and Y respectively; and<br />

27 axial cells in Z direction. The<br />

number of rods per channel is ¼, ½,<br />

or 1 depending on the location<br />

of the sub-channel as can be seen in<br />

Figure 2.<br />

Six different mixing coefficients<br />

are tested for the validation, 0.03,<br />

0.04, 0.05, 0.06, 0.<strong>07</strong> and 0.08.<br />

Figure 3 shows the difference<br />

between the average-calculated and –<br />

measured temperatures at the top of<br />

the sub-channels dependent on the<br />

mixing coefficients. With no mixing,<br />

most of the tem peratures are outside<br />

the 10 % scattering band, but an<br />

increasing mixing coefficient leads to<br />

temperatures closer to the measured<br />

values. However, starting at a mixing<br />

coefficient of 0.05 the temperatures<br />

disperse again. The minor deviation<br />

is found using coefficients of 0.05<br />

and 0.06.<br />

3.2 Void dispersion<br />

A void dispersion term (pi) is added to<br />

the vapor momentum equation for<br />

bubbly flow and is calculated from an<br />

assessment of the turbulent kinetic<br />

energy using the next equation [5]:<br />

<br />

(10)<br />

This implementation affects directly<br />

the equation (5) adding a term, and<br />

thus gives the following equation:<br />

| | Fig. 2.<br />

View from the top of the TWOPORFLOW’s model of the NUPEC PSBT.<br />

(11)<br />

3.3 Turbulent conductivity<br />

To describe the effect of the turbulent<br />

flow between channels in the energy<br />

equation, the turbulent conductivity<br />

between adjacent sub-channels is<br />

calculated using the turbulent Prandtl<br />

number [6]. This number is defined as<br />

the ratio between the momentum<br />

eddy diffusivity and the heat transfer<br />

| | Fig. 3.<br />

Difference between measured and calculated temperatures dependent on mixing coefficient.<br />

Operation and New Build<br />

Further Development of a Thermal- Hydraulics Two-Phase Flow Tool ı Verónica Jáuregui Chávez, Uwe Imke, Javier Jiménez and V.H. Sánchez-Espinoza


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

| | Fig. 4.<br />

Geometry of test Assemblies 1, 01, 02, 03 and 04.<br />

1.15 1.30 1.15 1.30 1.30 1.15 1.30 1.15<br />

1.30 0.45 0.89 0.89 0.89 0.45 1.15 1.30<br />

1.15 0.89 0.89 0.89 0.89 0.89 0.45 1.15<br />

1.30 0.89 0.89 0.89 0.89 0.89 1.15<br />

1.30 0.89 0.89 0.89 0.89 0.89 1.15<br />

1.15 0.45 0.89 0.89 0.89 0.89 0.45 1.15<br />

1.30 1.15 0.45 0.89 0.89 0.45 1.15 1.30<br />

1.15 1.30 1.15 1.15 1.15 1.15 1.30 1.15<br />

A)<br />

1.15 1.30 1.15 1.30 1.30 1.15 1.30 1.15<br />

1.30 0.45 0.89 0.89 0.89 0.45 1.15 1.30<br />

1.15 0.89 0.89 0.89 0.89 0.89 0.45 1.15<br />

1.30 0.89 0.89 0.89 1.15 1.15<br />

1.30 0.89 0.89 0.89 1.15 1.15<br />

1.15 0.45 0.89 0.89 0.89 0.89 0.45 1.15<br />

1.30 1.15 0.45 0.89 0.89 0.45 1.15 1.30<br />

1.15 1.30 1.15 1.15 1.15 1.15 1.30 1.15<br />

B)<br />

OPERATION AND NEW BUILD 403<br />

| | Fig. 5.<br />

Lateral power distribution BFBT.<br />

4.2 NUPEC BFBT stationary<br />

void fraction tests (void<br />

drift)<br />

Fifteen tests of the Exercise 1 Phase I<br />

“steady-state sub-channel grade<br />

benchmark” from the BWR Full- size<br />

Fine-mesh Bundle Test (BFBT)<br />

Benchmark [9] were used to validate<br />

the implementation of the void<br />

dispersion. The tests have a geometry<br />

of 8x8 pin assembly , different lateral<br />

power distributions, (uniform for<br />

assembly 1; Figure 5-A for assemblies<br />

01, 02, 03; and Figure 5-B for<br />

assembly 4), and different axial power<br />

distributions (constant for assemblies<br />

01, 02, 03, and 4; and cosine for<br />

assembly 1).<br />

The boundary conditions of the<br />

tests are:<br />

• Outlet pressure: ~7.15 MPa<br />

• Inlet mass flow: ~15.20 kg/s<br />

• Inlet temperature: ~278 °C<br />

• Bundle power: 1.9 – 6.48 MW<br />

The error in the void measurement<br />

is given as 3% [9].The tests have<br />

been modeled in TWOPORFLOW<br />

using a coolant centered sub-channel<br />

approach, making an arrangement<br />

of 9x9 sub-channels and 24 axial<br />

cells. A small mixing coefficient of<br />

0.0<strong>07</strong> is set, because the assemblies<br />

do not have mixing vane spacers,<br />

as used in PSBT. The number of rods<br />

per channel is ¼, ½, or 1 depending<br />

on the location of the sub-channel<br />

(Figure 2).<br />

The calculations were run with an<br />

old version of TWOPORFLOW without<br />

void drift, and with the new model.<br />

The average percentage error in void<br />

fraction per assembly of both simulations<br />

with respect to the experimental<br />

data shows a better approximation<br />

using the version of TWOPORFLOW<br />

with void drift (Figure 6).<br />

5 Conclusions and<br />

outlook<br />

The validation results obtained for the<br />

improved TWOPORFLOW code have<br />

shown that the code is capable to<br />

simulate in an appropriate way the<br />

most important thermos-hydraulic<br />

phenomena occurring in a BWR or in<br />

similar conditions.<br />

The next step is to improve and<br />

validate critical heat flux (CHF),<br />

| | Fig. 6.<br />

Average % error of simulations with- and without void dispersion term (pi).<br />

transition boiling, and subcooled boiling<br />

correlations of TWOPORFLOW.<br />

In addition, post-CHF models like<br />

minimum film boiling temperature,<br />

annular film dry out, rewetting, and<br />

cool down of a superheated surface<br />

is needed in order to simulate the<br />

physical phenomena that may happen<br />

during accidental conditions in a BWR<br />

core.<br />

Acknowledgments<br />

This work has been performed at<br />

the Institute for Neutron Physics and<br />

Reactor Technology (INR) of the Karlsruhe<br />

Institute of Technology (KIT). The<br />

authors would like to thank the<br />

Program Nuclear Safety Research of<br />

KIT for the financial support of the<br />

research topic “multi-physics methods<br />

for LWR”.<br />

Operation and New Build<br />

Further Development of a Thermal- Hydraulics Two-Phase Flow Tool ı Verónica Jáuregui Chávez, Uwe Imke, Javier Jiménez and V.H. Sánchez-Espinoza


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

404<br />

DECOMMISSIONING AND WASTE MANAGEMENT<br />

Nomenclature<br />

C p<br />

D H<br />

e<br />

→<br />

FI<br />

Specific Heat (J/kg-K)<br />

Hydraulic diameter (m)<br />

Internal energy (J/kg)<br />

Friction at vapor-liquid interface<br />

(N/m 3 )<br />

→<br />

Fwk Wall friction for phase k (N/m 3 )<br />

→ g Gravity (kg/m-s 2 )<br />

l<br />

P<br />

pi<br />

Characteristic mixing length (m)<br />

Pressure (Pa)<br />

Void dispersion term (Pa/m)<br />

Pr tur Turbulent Prandtl number (0.9)<br />

Q H<br />

Q I<br />

Q w<br />

Internal heat source in porous structure<br />

(W/m 3 )<br />

Heat exchange between phases<br />

(W/m 3 )<br />

Heat exchange between structure<br />

and fluid (W/m 3 )<br />

t Time (s)<br />

→ V, V Velocity of fluid (m/s)<br />

Greek letters<br />

α<br />

β<br />

Γ I<br />

λ<br />

λ k<br />

λ tur<br />

Volume fraction of vapor<br />

Mixing coefficient<br />

Rate of evaporation/condensation<br />

(kg/m 3 -s)<br />

Total thermal conductivity (W/m-K)<br />

Turbulent conductivity of the fluid<br />

(W/m-K)<br />

Turbulent conductivity (W/m-K)<br />

μ<br />

Effective viscosity (Pa-s)<br />

μ mol Molecular viscosity (Pa-s)<br />

μ tur<br />

Turbulent viscosity (Pa-s)<br />

ρ Fluid or clad density (kg/m 3 )<br />

φ<br />

Subscripts<br />

L<br />

v<br />

Porosity<br />

Bibliography<br />

Liquid Phase<br />

Vapor phase<br />

[1] U. Imke, “Porous media simplidied<br />

simulation of single- and two-phase<br />

flow heat transfer in micro-channel<br />

heat exchangers,” Chemical Engineering<br />

Journal, pp. 295-302, 2004.<br />

[2] B. Alma, U. Imke, R. Knitter, U. Schygulla<br />

and S. Zimmermann, “Testing and<br />

simulation of ceramic micro heat<br />

exchangers,” Chemical Engineering<br />

Journal, no. 135, pp. 179-184, 2008.<br />

[3] J. Jimenez, N. Trost, U. Imke and V.<br />

Sanchez, “Recent developments in<br />

TWOPORFLOW, a two-phase floew<br />

porous media code for transient<br />

thermo- hydraulic simulations,” in<br />

Annual Meeting on Nuclear<br />

Technology, Frankfurt, Germany, 2014.<br />

[4] F. S. Castellana, W. T. Adams and J. E.<br />

Casterline, “Single-Phase Sub-channel<br />

Mixing in a Simulated Nuclear Fuel<br />

Assembly,” Nuclear Engineering and<br />

Design, no. 26, pp. 242-249, 1974.<br />

[5] M. Valette, “Analysis of Subchannel and<br />

Rod Bundle PSBT Experiments with<br />

CATHARE 3,” Science and Technology of<br />

Nuclear Installations, 2012.<br />

[6] S. J. Kim and S. P. Jang, “Effects of the<br />

Darcy number, the Prandtl number,<br />

and the Reynolds number on local<br />

thermal non-equilibrium,” International<br />

Journal of Heat and Mass Transfer,<br />

no. 45, pp. 3885-3896, 2002.<br />

[7] A. Malhotra and S. Kang, “Turbulent<br />

Prandtl number in circular pipes,”<br />

International Journal of Heat and Mass<br />

Transfer, no. 27, pp. 2158-2161, 1984.<br />

[8] NUPEC, “OECD/NRC Benchmark based<br />

on NUPEC PWR Sub-channel and<br />

Bundle Tests (PSBT) Volume I: Experimental<br />

Database and Final Problem<br />

Specifications,” NUPEC, Japan, 2010.<br />

[9] NUPEC, “NUPEC BWR Full-size<br />

Fine-mesh Bundle Test (BFBT)<br />

Benchmark. Volume I: Specifications,”<br />

Japan, 2006.<br />

Authors<br />

Verónica Jáuregui Chávez<br />

Uwe Imke<br />

Javier Jiménez<br />

V.H. Sánchez-Espinoza<br />

Karlsruhe Institute of Technology<br />

Institute for Neutron Physics and<br />

Reactor Technology<br />

Hermann von Helmholtz Platz 1<br />

76344 Eggenstein-Leopoldshafen,<br />

Germany<br />

Besonderheiten bei Messungen<br />

zur radiologischen Charakterisierung<br />

hochradioaktiver Abfälle<br />

Marina Sokcic-Kostic und Roland Schultheis<br />

1 Einführung Beim Betrieb von Kernkraftwerken fallen gelegentlich hochradioaktive Abfälle an, wie zum<br />

Beispiel Bruchstücke defekter Brennelemente oder Filter von heißen Zellen. In manchen Kraftwerken wurden diese<br />

Abfälle über lange Zeit in unterirdischen Depots gelagert. Diese Depots entsprechen jedoch nicht den Zielsetzungen für<br />

eine sichere Langzeitlagerung, bis die im Abfall enthaltenen radioaktiven Isotope ausreichend zerfallen sind und der<br />

Abfall dann als nicht-radioaktiver Abfall weiterverarbeitet oder entsorgt werden kann.<br />

Für solche Abfälle hat die NUKEM<br />

Technologies Engineering Services Abfallbehandlungsmöglichkeiten<br />

konzipiert<br />

und in Projekten umgesetzt,<br />

die hochradioaktive Abfälle charakteri<br />

sieren und entsprechend den<br />

An forderungen für die Langzeitlagerung<br />

konditionieren. Dies schließt<br />

auch eine Volumenverminderung ein,<br />

um so die künftigen Lagerkosten zu<br />

minimieren.<br />

Der Schwerpunkt dieses Artikels<br />

liegt in der Messung von hochaktivem<br />

Abfall und seinen Impli kationen.<br />

2 Charakterisierung<br />

der Abfälle<br />

Nach der Verfüllung der konditio nierten<br />

Abfälle in geeignete Behälter werden<br />

die Abfälle wie folgt charak terisiert:<br />

a) Dosisleistung an der Behälteroberfläche<br />

b) Kontamination der Behälteroberfläche<br />

c) Spezifische Aktivität des Inhaltes<br />

der Behälter<br />

d) Zeit bis zum Abklingen der Aktivität<br />

(Halbwertszeit der enthaltenen<br />

Isotope)<br />

a) und b) sind wichtig für die<br />

Handhabung und den Transport der<br />

Behälter, c) und d) hingegen für die<br />

Lagerung des Abfalls.<br />

Decommissioning and Waste Management<br />

Special Features of Measurement for the Radiological Characterization of High-level Radioactive Waste ı Marina Sokcic-Kostic and Roland Schultheis


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

Die Grenzwerte für eine Klassifizierung<br />

gemäß a)-d) sind in den<br />

einzelnen Ländern teilweise unterschiedlich.<br />

Typische Werte sind:<br />

a) > 2 mSv/h<br />

b) Wischtestwerte:<br />

Beta-Aktivität ><br />

10 7 Teilchen/cm 2 /min<br />

Alpha-Aktivität ><br />

10 6 Teilchen/cm 2 /min<br />

c) Beta-Aktivität > 3.7*10 9 Bq/kg<br />

Alpha-Aktivität > 3.7*10 8 Bq/kg<br />

d) Der Abfall wird als langlebig<br />

deklariert, wenn er einen signifikanten<br />

Anteil von Isotopen mit<br />

einer Halbwertszeit größer 30<br />

Jahre hat (Ausnahme: Cs-137).<br />

Wie gezeigt, gibt es für hochaktiven<br />

Abfall nur einen unteren Grenzwert.<br />

Bei der Planung von Anlagen und<br />

Messeinrichtungen muss man zunächst<br />

auch obere Grenzwerte<br />

definieren. So müssen die Räume für<br />

die Handhabung eine ausreichende<br />

Abschirmung aufweisen. Das fängt<br />

damit an, dass die Räume für die<br />

Handhabung ausreichende Abschirmung<br />

aufweisen. Aber auch die<br />

Instrumentierung muss so ausgelegt<br />

sein, dass sie bei den zu erwartenden<br />

Aktivitäten noch funktionsfähig ist.<br />

3 Allgemeine Eigenschaften<br />

des hochaktiven<br />

Abfalls<br />

Bevor man die geeignete Messmethode<br />

für den hochaktiven Abfall<br />

auswählt, sollte man zunächst einmal<br />

Herkunft und Eigenschaften des<br />

Abfalls betrachten.<br />

Hochaktive Abfälle können sowohl<br />

fest wie auch flüssig sein. Wenn man<br />

einmal die hochaktiven Abfälle aus<br />

der Wiederaufarbeitung von Brennstäben<br />

ausklammert, so eignen sich<br />

für die Langzeitlagerung nur feste<br />

Stoffe, weswegen flüssige Abfallstoffe<br />

zuvor in feste Formen umgewandelt<br />

werden müssen (z.B. durch Eindampfung<br />

etc.). Flüssige Stoffe sind<br />

für die Langzeitlagerung nicht<br />

geeignet, da hier chemische Reaktionen<br />

nicht ausgeschlossen werden<br />

können, die zum Beispiel Korrosion<br />

der Behälter zur Folge haben können.<br />

Kernbrennstoff ist bei Abfällen aus<br />

Kernkraftwerken im Allgemeinen nur<br />

in sehr kleinen Mengen im Abfall<br />

präsent, da generell Kernbrennstoff<br />

kein Abfall ist. Kleinere Mengen<br />

können zum Beispiel dadurch entstehen,<br />

dass Material von defekten<br />

Brennelementen im Reaktor nach<br />

unten fällt (sogenannter „fuel debris“).<br />

Die Hauptaktivität der hoch aktiven<br />

Abfälle resultiert aus Aktivierungsprozessen<br />

(z.B. Aktivierung von<br />

| | Abb. 1.<br />

Geiger-Müller-Zählrohr mit Energiekompensation.<br />

Stahl) oder aus der Freisetzung von<br />

Cs-137, welches durch mangelnde<br />

Rückhaltung der Kernbrennstäbe in<br />

den Kühlkreislauf gelangt. Letzteres<br />

wird durch Filtrierung zurückgehalten.<br />

Diese Filter können dann<br />

hohe Aktivitäten aufweisen.<br />

Etwas anders verhält es sich, wenn<br />

der Abfall aus Unfällen, wie zum<br />

Beispiel Tschernobyl, stammt. Dann<br />

können sehr wohl auch Isotope wie<br />

Uran oder Plutonium in relevanten<br />

Mengen vorliegen.<br />

Um die im Folgenden beschriebenen<br />

Messmethoden so einfach wie<br />

möglich zu halten, ist folgende Vorgehensweise<br />

empfehlenswert:<br />

• Zunächst ist die Herkunft des<br />

Abfalls zu klären<br />

• Dann sollte auf der Basis von<br />

Probenahmen die zu erwartenden<br />

Isotope in einem Labor bestimmt<br />

werden<br />

• Anschließend sollte der Isotopenvektor<br />

bezogen auf Co-60 und<br />

Cs-137 bestimmt werden, welche<br />

dann als Leitisotope bei der Berechnung<br />

der Aktivitäten heran gezogen<br />

werden können.<br />

4 Messung der Oberflächendosisleistung<br />

bei<br />

hochaktiven Abfällen<br />

Für die Messung der Oberflächendosisleistung<br />

werden in der Regel<br />

Geiger-Müller-Zählrohre eingesetzt,<br />

die aufgrund ihrer geringen Baugröße<br />

auch Hot Spot Erkennung erlauben<br />

(Abbildung 1). Der Abstand zwischen<br />

Zählrohr und Oberfläche ist gewöhnlich<br />

mit 10 cm spezifiziert. Die<br />

Zählrohre sind mittels Filter energiekompensiert<br />

und in Sv/h geeicht.<br />

Ein wichtiger Punkt bei Messungen<br />

an hochaktiven Abfällen ist die<br />

Vermeidung einer Paralyse des Zählrohres.<br />

Diese könnte zu einer Unterschätzung<br />

der Dosisleistung und<br />

ernsthaften Konsequenzen für die an<br />

der Hantierung beteiligten Arbeiter<br />

führen.<br />

Aus diesem Grund werden oft<br />

Geräte mit zwei Zählrohren unterschiedlicher<br />

Empfindlichkeit eingesetzt,<br />

wodurch die Messdynamik des<br />

Gerätes erweitert wird. Weiterhin<br />

arbeiten die Geräte in einem totzeitlosen<br />

Modus um den Messbereich zu<br />

erweitern und Messfehler durch die<br />

ansonsten benötigte Totzeitkorrektur<br />

zu minimieren (Abbildung 2).<br />

Hierbei wird die Hochspannung<br />

für das Messgerät zunächst unterhalb<br />

der Einsatzgrenze eingestellt. Anschließend<br />

wird die Hochspannung<br />

über die Einsatzgrenze erhöht und<br />

die Zeit bis zum Auftreten des ersten<br />

Pulses gemessen. Dann wird die Hochspannung<br />

wieder abgesenkt. Nach<br />

einem fest vorgegebenen Zeitintervall<br />

wird der Vorgang wiederholt. Die so<br />

gemessenen Zeitintervalle sind umso<br />

kleiner, je höher die Zählrate ist. Diese<br />

Messmethode ist bei hohen Zählraten<br />

recht genau, bei kleinen Zählraten<br />

sind die statistischen Fehler etwas<br />

größer, was bei hochaktiven Abfällen<br />

ohne Bedeutung ist.<br />

5 Messung der Oberflächenkontamination<br />

bei hochaktiven Abfällen<br />

Wenn die Behälter mit Abfall außerhalb<br />

von kerntechnischen Anlagen<br />

(z.B. in Zwischen- oder Endlager)<br />

transportiert werden müssen, so muss<br />

zur Verhinderung der Verschleppung<br />

von Radioaktivität die Behälteroberfläche<br />

auf Kontaminationsfreiheit<br />

geprüft werden. Wegen der Eigenstrahlung<br />

derartiger Behälter kann<br />

die Kontamination bezüglich Alphaoder<br />

Betastrahlung nicht direkt<br />

gemessen werden. Daher wird ein<br />

zweistufiges Verfahren angewandt.<br />

| | Abb. 2.<br />

Dosisleistungsmessgerät mit zwei totzeitfrei<br />

arbeitenden Geiger-Müller-Zählrohren<br />

DECOMMISSIONING AND WASTE MANAGEMENT 405<br />

Decommissioning and Waste Management<br />

Special Features of Measurement for the Radiological Characterization of High-level Radioactive Waste ı Marina Sokcic-Kostic and Roland Schultheis


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

DECOMMISSIONING AND WASTE MANAGEMENT 406<br />

Zunächst wird die Behälteroberfläche<br />

mit einem speziellen Papier<br />

abgewischt. Dies kann manuell oder<br />

auch automatisiert mit Kassetten<br />

erfolgen. Eine Variante ist auch die<br />

Nutzung von Rollen, die mit einem<br />

doppelseitig klebenden Band bestückt<br />

sind. Beim Abrollen werden durch<br />

den Kleber locker sitzende Kontaminationen<br />

fixiert.<br />

Anschließend wird das Papier oder<br />

die Rollen in einen Raum mit niedriger<br />

Umgebungsaktivität verbracht, in<br />

welchem ein Kontaminationsmessgerät<br />

aufgebaut ist. Dieses Gerät misst<br />

dann die von der Wischprobe ausgehende<br />

Alpha- und Betastrahlung mit<br />

Hilfe von Szintilationszählern. Um die<br />

Empfindlichkeit für Alphastrahlung zu<br />

erhöhen, sind diese teilweise mit ZnS<br />

Pulver oder Ähnlichem an der Außenseite<br />

bestäubt, welche bei Auftreffen<br />

von Alphastrahlung eine hohe Lichtausbeute<br />

ergeben.<br />

6 Messung der spezifischen<br />

Aktivität bei<br />

hochaktiven Abfällen<br />

Die Messung der Aktivität eines<br />

Gebindes (Abbildung 3) beruht gewöhnlich<br />

auf dem Nachweis der von<br />

den Gebinden emittierten Photonen.<br />

Um die Gesamtzahl von Betazerfällen<br />

zu berechnen, benötigt man den<br />

zugehörigen Isotopenvektor. Dieser<br />

beschreibt nicht nur die pro Betazerfall<br />

emittierten Photonen sondern<br />

auch die verdeckten Zerfälle, wie zum<br />

| | Abb. 3.<br />

Fassmonitor bestückt mit Dosisleistungs messgeräten.<br />

| | Abb. 4.<br />

Spektren eines 3x3inch NaI Spektrometers<br />

(oben) und eines 2x2inch Spektrometers<br />

(unten) eines Co-60 Präparates.<br />

Beispiel Betazerfälle ohne Photonenemission<br />

(z.B. Sr-90).<br />

Für Abfälle aus Kernkraftwerken<br />

ist gewöhnlich bei sehr hohen Aktivitäten<br />

eine Dominanz der Isotope<br />

Cs-137 und Co-60 zu finden. Diese<br />

Isotope können gut gemessen werden<br />

und dienen dann als Leitnuklide.<br />

Aufgrund der unterschiedlichen<br />

Halbwertszeiten ist eine Unterscheidung<br />

zwischen Co-60 und Cs-137<br />

nötig. Daher werden zur Messung<br />

gewöhnlich HPGe Detektoren eingesetzt,<br />

die eine exzellente Trennung<br />

ermöglichen. Durch die getrennte<br />

Messung von Co-60 und Cs-137<br />

ist zugleich auch eine der Energie<br />

der Isotope angepasste Absorptionskorrektur<br />

möglich.<br />

Probleme bei hochaktiven Abfällen<br />

entstehen, wenn der Dynamikbereich<br />

des Detektors nicht mehr mit den<br />

Zählraten mitkommt. Bei HPGe<br />

Detektoren ist die Zählrate auf etwa<br />

60.000 Ereignisse im Spektrum<br />

begrenzt. Dies gilt bei rückgekoppeltem<br />

Vorverstärken. Für Transistor<br />

Reset Schaltungen, bei welchen der<br />

Vorverstärker nicht rückgekoppelt<br />

sondern mit einem Transistorschalter<br />

kurzgeschlossen wird, ist dieser Wert<br />

etwas höher (ca. 80 bis 100.000), aber<br />

auch dieser Wert ist bei hoch aktivem<br />

Abfall schnell erreicht.<br />

Man könnte nun auf die Idee<br />

kommen, den Kristall zu verkleinern<br />

um so die Zählrate abzusenken. Doch<br />

dies ist keine gute Idee, wie die<br />

Abbildung 4 der Spektren eines NaI<br />

Spektrometers zeigen:<br />

Wie die Abbildung 4 zeigt, verringert<br />

sich bei Verkleinerung des<br />

Kristalls zwar die Fläche unter den<br />

beiden Co-60 Linien, gleichzeitig<br />

steigt aber der niederenergetische<br />

Untergrund an, da die Wahrscheinlichkeit,<br />

dass die Photonen vollständig<br />

im Kristall absorbiert werden, ebenfalls<br />

niedriger wird. Den gleichen<br />

Effekt finden wir auch bei HPGe<br />

Detektoren.<br />

Im vorliegenden Fall nimmt die<br />

Peakfläche bei einer Verkleinerung<br />

von 3 auf 2 inch (Durchmesser wie<br />

Länge des Kristalls) zwar auf 37 % ab,<br />

die Gesamtzählrate verringert sich<br />

jedoch nur auf 60 %.<br />

Die beste Methode bei sehr hohen<br />

Zählraten ist die Vergrößerung des<br />

Abstandes zwischen Detektor und<br />

Gebinde. Leider sind bei sehr hohen<br />

Abfallaktivitäten die räumlichen Gegebenheiten<br />

oft sehr eingeschränkt,<br />

sodass diese Methode nicht viel<br />

weiterhilft.<br />

Eine andere Methode ist der Einsatz<br />

von Schlitzkollimatoren. Allerdings<br />

muss die Öffnung groß<br />

genug sein um Vielfachstreueffekte<br />

am Kollimator zu unterbinden.<br />

Wenn die bisher beschriebenen<br />

Methoden nicht weiterhelfen, so muss<br />

man Absorptionsplatten vor den<br />

Detektor stellen. Allerdings muss man<br />

dabei für jede Energie (oder Linie)<br />

eine entsprechende Absorptionskorrektur<br />

durchführen. Diese Methode<br />

wurde bislang mit Bleiplatten bis zu<br />

15 cm Dicke erfolgreich angewandt.<br />

Aber auch diese Methoden hat ihre<br />

Grenzen.<br />

Bei spezifischen Aktivitäten von<br />

10 10 Bq/kg oder höher für Co-60 oder<br />

Cs-137 endet der Einsatz von HPGe<br />

Spektrometern. Hier muss man auf<br />

die Messung der Oberflächendosisleistung<br />

zurückgreifen und aus diesen<br />

Werten die Aktivität berechnen. Dies<br />

gelingt nur, wenn man für die Rechnungen<br />

ein Modell entwickelt hat.<br />

Als Beispiel sei hier ein Container<br />

erwähnt, der von oben mit Abfällen<br />

gefüllt wird, und an dessen Unterseite<br />

sich Dosisleistungsmessgeräte befinden.<br />

Zusätzlich wird das Gewicht des<br />

Containers gemessen. Als radio aktives<br />

Isotop wird Co-60 angenommen.<br />

Die MCNP Rechnungen, die hierfür<br />

durchgeführt wurden, zeigten,<br />

dass man grob die Dosisleistung<br />

als Funktion des Container Netto-<br />

Gewichtes beschreiben kann (siehe<br />

Abbildung 5).<br />

Die eingezeichnete Linie präsentiert<br />

alle Werte in einem Fehlerbereich<br />

von +/-30 %. Bei den Rechnungen<br />

schwankten die Dichten im Bereich<br />

von 0,2 bis 1,1 g/cm 3 . Beim Befüllen<br />

wurde ein Füllkegel mit einem<br />

Decommissioning and Waste Management<br />

Special Features of Measurement for the Radiological Characterization of High-level Radioactive Waste ı Marina Sokcic-Kostic and Roland Schultheis


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

| | Abb. 5.<br />

Dargestellt ist der Empfindlichkeitsfaktor S als Funktion des Abfallgewichtes. Die Bedeutung von S ist weiter unten im Text näher erklärt.<br />

Öffnungswinkel von 30 Grad simuliert.<br />

Entsprechend dem Gewicht und<br />

der angenommenen Dichte war der<br />

Füllungsgrad des Containers unterschiedlich<br />

und lag im Bereich von<br />

8 bis 72,4 %.<br />

Die Aktivität ergibt sich aus der<br />

Formel (1):<br />

Aktivität [Bq] =<br />

Dosisleistung [Sv/h] *100 /<br />

Verzweigungsverhältnis / S(1)<br />

S ist der in Abbildung 5 dargestellte<br />

Empfindlichkeitsfaktor<br />

Der Maximalbereich eines Standard-Dosisleistungsmessgerätes<br />

liegt<br />

bei etwa 100 Sv/h. Geht man<br />

von S = 1E-11 aus und setzt das<br />

Ver zweigungsverhältnis auf 2, so<br />

erhält man eine maximal messbare<br />

Aktivität von 5E+14 Bq. Das ergibt<br />

bei einem Gewicht von 2.290 kg<br />

eine spezifische Aktivität von 2E+<br />

11 Bq/kg. Bei einem Gewicht von<br />

100 kg erhält man entsprechend<br />

eine spezifische Aktivität von 7,4E<br />

+11 Bq/kg.<br />

Abschließend muss erwähnt werden,<br />

dass der Raum, in welchem die<br />

Messungen durchgeführt werden, als<br />

Heiße Zelle ausgelegt und natürlich<br />

für jeden Zutritt gesperrt sein muss<br />

(Abbildung 6).<br />

Diese Darstellung gilt nur für<br />

Detektoren die unterhalb des Containers<br />

montiert sind. Die Messwerte<br />

seitlicher Detektoren oder solche auf<br />

dem Deckel des Containers sind hingegen<br />

sehr stark vom Füllungsgrad<br />

abhängig.<br />

7 Klassifikation der<br />

hochaktiven Abfälle als<br />

lang lebiger (long lived)<br />

oder als kurzlebiger<br />

(short lived) Abfall<br />

Die Klassifikation von radioaktivem<br />

Abfall als langlebig (LLW long lived<br />

waste) basiert auf der Existenz von<br />

Radionukliden mit einer Halbwertszeit<br />

größer als 30 Jahre, wobei Cs-137<br />

nicht mitbewertet wird. Als Nebenbedingung<br />

wird gefordert, dass die<br />

Aktivität derartiger Nuklide per<br />

Gebinde im Mittel nicht größer ist<br />

als 400 Bq/g. Die hier aufgeführte<br />

Beschreibung ist beispielhaft und<br />

kann entsprechend lokaler Gesetze<br />

variieren.<br />

Zusammenfassung<br />

Der Umgang und die Messung<br />

von hochaktivem Abfall stellt an<br />

Messmethodik und Instrumentierung<br />

sehr spezielle Anforderungen. Anstelle<br />

der sonst üblichen Parameter<br />

wie Nachweisgrenze und Selektivität<br />

stehen der Dynamikbereich der<br />

Messung und obere Messgrenzen im<br />

Vordergrund.<br />

Auch ist die Durchführbarkeit der<br />

Messungen oft an das Vorhandensein<br />

von ausreichenden Abschirmungen<br />

und der Fernhantierung der Operationen<br />

gebunden.<br />

Das Fernziel der Messungen ist<br />

die Abschätzung von Lagerdauer und<br />

Lagerart bis hin zum Zeitpunkt, an<br />

welchem der Abfall durch Zerfall<br />

seiner radioaktiven Isotope gefahrlos<br />

gehandhabt werden kann.<br />

Authors<br />

Dr. Marina Sokcic-Kostic<br />

Roland Schultheis<br />

NUKEM Technologies Engineering<br />

Services GmbH<br />

Industriestraße 13<br />

63755 Alzenau, Germany<br />

DECOMMISSIONING AND WASTE MANAGEMENT 4<strong>07</strong><br />

| | Abb. 6.<br />

Zelle für den fernhantierten Umgang mit radioaktiven Stoffen.<br />

Decommissioning and Waste Management<br />

Special Features of Measurement for the Radiological Characterization of High-level Radioactive Waste ı Marina Sokcic-Kostic and Roland Schultheis


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

408<br />

Inside<br />

International Youth Nuclear Congress (IYNC) – Women in Nuclear (WiN) Global Conference<br />

KTG INSIDE<br />

11. bis 17. März <strong>2018</strong> Bariloche, Argentinien<br />

… inklusive Ausflug in die Geschichte der Kerntechnik Argentiniens<br />

| | IYNC und WiN Congress in Argentinien: Gruppenfoto der Teilnehmenden.<br />

Argentinien ist das Land des Tangos, der Gauchos, von<br />

Rindfleisch und Wein so das Cliché. Kernreaktoren<br />

gehören da kaum dazu. Als Melina Belinco das 1995 von<br />

Maela Viirso gegründete WiN Chapter in Argentinien<br />

wieder belebte, wollte sie die Atomforschung Argentiniens<br />

international zeigen und so traf es sich gut, dass der International<br />

Youth Nuclear Congress <strong>2018</strong> in Argentinien<br />

geplant war. Die Zusammenarbeit der Frauen mit den<br />

Jungen führte zu einer inspirierenden Konferenz in<br />

Bariloche. Dort ist neben Schokolade der Nuklearsektor<br />

äußerst wichtig. Junge Frauen und Männer werden seit<br />

1955 im Instituto Balseiro ausgebildet. Der Kongress<br />

vermittelte nicht nur viel Wissenswertes über Kerntechnik<br />

heute. Er beleuchtete auch die Entwicklung der „Small<br />

Modular Reaktors“ (SMR) und in der Ausstellung neben<br />

den zahlreichen Postern von Teilnehmenden auch den<br />

Entwicklungsstand der vier Reaktoren in Barakah (VAE)<br />

sowie die Vielfalt der chinesischen Kernforschung.<br />

Die Länderreports wurden gemeinsam von WiN und<br />

IYNC erarbeitet und mehrheitlich auch gemeinsam<br />

präsentiert. Das Kongressprogramm war sehr umfangreich<br />

und die Qual der Wahl der zahlreichen technischen<br />

Vorträge, die parallel – teilweise an drei verschiedenen<br />

Orten stattfanden – war oft schwierig.<br />

Unter Gabi Voigt's (WiN Global Präsidentin seit 2016)<br />

speditiver Leitung fand die WiN-Generalversammlung<br />

statt, wo ihre Vorgängerin Se-Moon Park den WiN Honorary<br />

Award entgegennehmen durfte. Der WiN Award ging an<br />

Professor Carla Notari, Argentinien. Mehrere Mentoring<br />

Workshops hatten zum Ziel, junge Frauen zu motivieren,<br />

sich selbstbewusst für eine Karriere in der Nukleartechnik<br />

zu bewerben.<br />

Die begleitenden Besichtigungen zeigten die Geschichte<br />

der argentinischen Nuklearforschung hautnah auf: Schon<br />

1948 überzeugte ein Doktor Richter den damaligen<br />

Präsidenten Perón von seinen Plänen, einen Fusions reaktor<br />

zu bauen. Auf der Isla Huemul, im See von Bariloche,<br />

entstand ein geheimes Fusions-Forschungsinstitut. 1951<br />

verkündete Perón, dass „eine kontrollierte thermonukleare<br />

Reaktionen auf technischer Skala“ erzielt wurde. Doch der<br />

Durchbruch blieb aus und Perón drehte den Geldhahn zu.<br />

Was tun mit den teuren Einrichtungen? Jemand überzeugte<br />

ihn, ein Labor für Kernspaltung (Centro Atomico) und<br />

ein Institut für Nukleartechnik (Instituto Balseiro) zu<br />

gründen.<br />

Zusätzlich gibt es die priv<strong>atw</strong>irtschaftlich organisierte<br />

Firma INVAP, die im Besitz der Provinz Rio Negro ist. Das<br />

Unternehmen hat eine interessante Geschichte. Gegründet<br />

wurde es zur Entwicklung von Forschungsreaktoren und<br />

zur Produktion von medizinischen Isotopen. Dies wurde<br />

zu einem Verkaufsschlager: Südlich von Sydney in<br />

Australien – Veranstaltungsort der WiN Global Conference<br />

2014 – liegt das Kernforschungszentrum ANSTO. Das<br />

Institut hatte damals eben den „Opal“, einen Swimmingpool-Reaktor,<br />

in Betrieb genommen. Er dient als Neutronenquelle<br />

für physikalische Forschungsprojekte, aber<br />

auch zur Herstellung von Mo-99, das in der medizinischen<br />

Diagnostik eine wichtige Rolle spielt. Dies ist einer von<br />

vielen Forschungsreaktoren unterschiedlicher Leistung,<br />

die bei INVAP entwickelt und gebaut wurden. Deren<br />

Entwicklung ist bemerkenswert. Man ist davon weggekommen,<br />

stark angereichertes Uran zu verwenden und<br />

begnügt sich jetzt mit 19,7 %. Argentinien hat Forschungsreaktoren<br />

nach Ägypten, Algerien, Australien, Bolivien,<br />

Kuba, Iran, Peru und Saudi-Arabien geliefert und landete<br />

kürzlich einen weiteren Verkaufserfolg in Petten, Holland!<br />

Wie an vielen Orten der Welt ist das politische Klima für<br />

Kernenergie auch in Argentinien volatil. Deshalb baute<br />

INVAP ein zweites Standbein in der Weltraumtechnik auf.<br />

Diese Sparte ist heute fast wichtiger als der Nuklearbereich.<br />

| | IYNC und WiN Congress in Argentinien: Gruppenfoto der Teilnehmenden.<br />

KTG Inside


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

Natürlich baute INVAP auch den RA-6 Reaktor für das<br />

staatliche Centro Atomico in Bariloche. Er wird zu Schulungszwecken<br />

genutzt. Hier werden Reaktoroperateure<br />

ausgebildet. Argentinien hat für die spanischsprachige<br />

Welt auf diesem Gebiet ein „Quasi-Monopol“. Im Zeitalter<br />

der Digitalisierung geht das Centro hier neue Wege: Über<br />

einen separaten Kontrollraum, der gegen Cyber-Attacken<br />

geschützt ist, können Studierende lernen, den Reaktor zu<br />

„fahren“ ohne nach Bariloche reisen zu müssen. Sie sitzen<br />

in ihrer Heimat am Simulator und arbeiten über das<br />

Internet.<br />

Neben Forschungsreaktoren hat Argentinien schon früh<br />

angefangen, Kernkraftwerke zu entwickeln. Der Markt für<br />

angereichertes Uran war damals von den USA beherrscht<br />

und streng reguliert. Um eine Abhängigkeit zu vermeiden,<br />

beschloss man, Natururan als Brennstoff zu verwenden<br />

und lieber das Wasser anzureichern und Schwerwasser<br />

(Deuterium) als Moderator zu nutzen. Die Wasseranreicherungsanlage<br />

hat damals die Schweizer Firma<br />

Sulzer geliefert. Die US-Regierung versuchte dies mit allen<br />

Mitteln zu verhindern – vergeblich. Heute verfügt Argentinien<br />

über drei Kernkraftwerke, alle vom Schwerwassertyp.<br />

In Atucha, unweit von Buenos Aires stehen zwei KKW von<br />

KWU/Siemens, in Embalse ein kanadischer CANDU.<br />

Das Centro Atomico beteiligt sich auch an der Entwicklung<br />

der Reaktoren der Zukunft: Klein und modular.<br />

Die argentinische Variante heißt CAREM und ist wie die<br />

meisten SMR „integriert“, das heißt, alle druckhaltenden<br />

Elemente wie Wärmetauscher und Druckhalter befinden<br />

sich im Reaktordruckbehälter. Der Primärkreislauf kommt<br />

ohne Pumpe aus und wird durch Konvektion angetrieben.<br />

Der Prototyp soll 32 MWe leisten. Zurzeit ist er in Atucha<br />

im Bau. SMR profitieren nicht von der „Economy of Scale“<br />

der Großreaktoren. Sie kompensieren das durch die<br />

geringe Menge an Hochdruck-Installationen.<br />

Man kann nur wünschen, dass die Zusammenarbeit der<br />

Jungen und der Frauen in allen Ländern weitergeführt<br />

wird. Hoffentlich bleibt es nicht bei diesem einen<br />

| | IYNC und WiN Congress in Argentinien: Vor-Ort vor dem Kernkaftwerk Atucha.<br />

gemeinsamen Kongress! Die Kernenergie braucht weltweit<br />

junge Frauen und Männer für zukünftige neue, inhärent<br />

sichere Reaktoren, aber auch für den sicheren Betrieb der<br />

heutigen KKW. Zusätzlich müssen die Ängste vor Radioaktivität<br />

– gerade von Frauen – angesprochen und abgebaut<br />

werden. Ohne den Einbezug der fast CO 2 -freien Kernenergie<br />

ist der Klimaschutz nicht erreichbar!<br />

Irene Aegerter<br />

Irene Aegerter<br />

Irene Aegerter doktorierte nach ihrem Physikstudium am<br />

Eidgenössischen Institut für Reaktorforschung, heute PSI.<br />

Sie war Vizedirektorin des Verbandes Schweizerischer<br />

Elektrizitätsunternehmen (VSE), gründete den Verein<br />

Frauen für Energie in der Schweiz und war Gründungsmitglied<br />

des weltweiten Netzwerkes „Women in Nuclear“<br />

(WiN) sowie Mitglied der Eidgenössischen Kommission<br />

für Sicherheit der Kernanlagen und Vize-präsidentin<br />

der Schweizerischen Akademie der Technischen Wissenschaften.<br />

Links:<br />

http://www.invap.<br />

com.ar/en/invap-2/<br />

about-invap/<br />

invap-headquarters.<br />

html<br />

https://www.cab.<br />

cnea.gov.ar/<br />

http://www.ib.edu.ar/<br />

409<br />

KTG INSIDE<br />

Herzlichen<br />

Glückwunsch!<br />

Juli <strong>2018</strong><br />

93 Jahre wird<br />

8. Dr. Werner Eyrich, Karlsruhe<br />

90 Jahre wird<br />

17. Dipl.-Ing. Karl Josef Sauerwald,<br />

Höchstadt<br />

86 Jahre werden<br />

24. Dipl.-Ing. Joachim May, Burgwedel<br />

27. Dr. Rainer Schwarzwälder, Glattbach<br />

31. Dr. Theodor Dippel,<br />

Eggenstein-Leopoldshafen<br />

83 Jahre wird<br />

20. Dipl.-Ing. Ralf Wünsche, Hannover<br />

82 Jahre werden<br />

1. Dipl.-Ing. Hans-Jürgen Börner,<br />

Weisenheim<br />

25. Dr. Gert Dressler, Lingen<br />

81 Jahre werden<br />

6. Dipl.-Ing. Paul Börner, Steinau<br />

16. Dr. Dieter Hennig, Berlin<br />

24. Dipl.-Ing. (FH) Klaus Haase, Bruchsal<br />

29. Dr. Herbert Reutler, Köln<br />

80 Jahre wird<br />

30. Dr. Philipp Dünner, Odenthal<br />

79 Jahre werden<br />

10. Dr. Bernhard Steinmetz,<br />

Bergisch Gladbach<br />

23. Heinz Stahlschmidt, Erlangen<br />

26. Dipl.-Ing. Ewald Passig, Bochum<br />

78 Jahre werden<br />

2. Prof. Dr. Anton Bayer, Ilmmünster<br />

2. Dr. Manfred Hagen, Berlin<br />

16. Dipl.-Ing. Dietrich Kuschel, Fulda<br />

31. Dr. Peter Schneider-Kühnle<br />

77 Jahre werden<br />

1. Norbert Semann, Bruchsal<br />

24. Dipl.-Ing. Friedrich Wietelmann,<br />

Erkrath<br />

25. Dr. Heinz-Wilhelm Bock, Erlangen<br />

75 Jahre werden<br />

4. Prof. Dr. Ioannis K. Hatzilau,<br />

Athen/GR<br />

10. Dipl.-Ing. Dieter Eder, Alzenau<br />

70 Jahre werden<br />

6. Dr. Hans-Urs Zwicky, Remigen<br />

19. Dr. Wolfgang Boeßert, Pirna<br />

65 Jahre wird<br />

18. Dipl.-Chem. Christel Herzog,<br />

Dresden<br />

60 Jahre werden<br />

8. Dipl.-Ing. Uwe Süss, Stutensee<br />

14. Jochen Rotzsche, Oldenburg<br />

18. Dipl.-Masch.-Ing. Manfred Meyer,<br />

Schwegenheim<br />

27. Prof. Dr. Joachim Axmann,<br />

Braunschweig<br />

28. Dr. Peter Schreiber, Hohenstorf<br />

50 Jahre werden<br />

5. Dr. Peter Engelhard, Essen<br />

9. Lothar Seiffert, Furtwangen<br />

21. Heike Mohrhardt, Hockenheim<br />

KTG Inside


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

410<br />

NEWS<br />

Wenn Sie keine<br />

Erwähnung Ihres<br />

Geburtstages in<br />

der <strong>atw</strong> wünschen,<br />

teilen Sie dies bitte<br />

rechtzeitig der KTG-<br />

Geschäftsstelle mit.<br />

KTG Inside<br />

Verantwortlich<br />

für den Inhalt:<br />

Die Autoren.<br />

Lektorat:<br />

Natalija Cobanov,<br />

Kerntechnische<br />

Gesellschaft e. V.<br />

(KTG)<br />

Robert-Koch-Platz 4<br />

10115 Berlin<br />

T: +49 30 498555-50<br />

F: +49 30 498555-51<br />

E-Mail:<br />

natalija.cobanov@<br />

ktg.org<br />

www.ktg.org<br />

August <strong>2018</strong><br />

94 Jahre wird<br />

1. Prof. Dr. Wolfgang Stoll, Hanau<br />

92 Jahre wird<br />

17. Dr. Rolf Schütte, Marburg<br />

88 Jahre wird<br />

2. Dipl.-Phys. Wolfgang Schwarzer,<br />

Weilerswist<br />

87 Jahre werden<br />

9. Prof. Dr. Hans-Jürgen Laue, Karlsruhe<br />

11. Dipl.-Ing. Siegfried Dreyer, Overath<br />

22. Dr. Dieter Eitner, Mannheim<br />

84 Jahre werden<br />

15. Dipl.-Phys. Heinrich Glantz,<br />

Eggenstein-Leopoldshafen<br />

24. Dipl.-Ing. Heinz Großer, Geesthacht<br />

83 Jahre werden<br />

16. Dr. Dietmar Albert, Salzgitter<br />

29. Dr. Hans-Jürgen Engelmann, Peine<br />

82 Jahre werden<br />

16. Dipl.-Ing. Dietrich Seeliger, Escheburg<br />

26. Dr. Günther Lill, Herzogenaurach<br />

31. Dr. Hartwig Poster, Radeberg<br />

80 Jahre werden<br />

6. Prof. Dr. Rudolf Avenhaus, Baldham<br />

9. Dr. Carl-Otto Fischer, Berlin<br />

21. Dr. Gerhard Schücktanz, Altdorf<br />

25. Dipl.-Phys. Armin Jahns,<br />

Bergisch Gladbach<br />

79 Jahre werden<br />

1. Dipl.-Ing. Gerhard Becker,<br />

Neunkirchen-Seelscheid<br />

8. Dipl.-Ing. Gottfried Merten, Rastatt<br />

24. Dipl.-Ing. Hans Wild, Bruchsal<br />

29. Dr. Adolf Hüttl,<br />

Monte Estoril/Portugal<br />

31. Dr. Dietrich Ekkehard Becker,<br />

Deisenhofen<br />

78 Jahre werden<br />

20. Dr. Herwig Pollanz,<br />

Linkenheim-Hochstetten<br />

24. Dipl.-Ing. Franz Schüler,<br />

Bubenreuth<br />

77 Jahre werden<br />

12. Dr. Klaus Riedle, Uttenreuth<br />

17. Dipl.-Ing. Jörg-Hermann Gutena,<br />

Emmerthal<br />

20. Dr. Willi Theis, Wien/A<br />

21. Dipl.-Phys. Peter Kahlstatt, Hameln<br />

29. Dipl.-Volkswirt Eckhard Strecker,<br />

Bonn<br />

76 Jahre wird<br />

28. Dipl.-Ing. Hans-J. Fröhlich, Berzhahn<br />

75 Jahre wird<br />

26. Dr. Roland Wutschig, Kaiserslautern<br />

70 Jahre werden<br />

2. Dipl.-Ing. Gerd-Rainer Lang,<br />

Sessenbach<br />

11. Dipl.-Ing. Ulrich Gräber, Stuttgart<br />

16. Dr. Gerhard Gräbner, Frankfurt/M.<br />

29. Dipl.-Ing. Peter Jung, Linkenheim<br />

65 Jahre werden<br />

2. Dipl.-Ing. Claus Peter Barthelmes,<br />

Erlangen<br />

3. Michael Eigenbauer, Burgau<br />

17. Dipl.-Ing. Volker Duill, Vechelde<br />

20. Dr. Bernd Schubert, Hamburg<br />

23. Dr. Reinhard Marquart, München<br />

26. Dipl.-Ing. Friedrich Hodde, Jülich<br />

29. Ing. Günter Schwarzl, Braunschweig<br />

60 Jahre werden<br />

2. Dipl.-Ing. Steffen Kniest, Dresden<br />

7. Dipl.-Ing. Eberhard H. Rausch,<br />

Stockstadt<br />

12. Dipl.-Ing. (FH) Uwe Schuster,<br />

Neckarsulm<br />

17. Dr. Wolfgang Faber, Hannover<br />

31. Dipl.-Ing. Michael Brielmayer,<br />

Mainhausen<br />

31. Dipl.-Ing. Hans-Michael Kursawe,<br />

Herzogenaurach<br />

50 Jahre werden<br />

12. Ronny Ziehm, Alzenau<br />

15. Dipl.-Phys. Anja Koschel, Düsseldorf<br />

28. Dipl.-Ing. Frank Staude, Winterbach<br />

Die KTG gratuliert ihren Mitgliedern<br />

sehr herzlich zum Geburtstag und<br />

wünscht ihnen weiterhin alles Gute!<br />

Top<br />

Framatome and the EPR<br />

reactor: a robust history and<br />

the passion it takes to succeed<br />

(framatome) “The Taishan 1 EPR<br />

reactor in China started up on June 6.<br />

This first chain reaction comes as the<br />

culmination of intense work accomplished<br />

by the nuclear industry for<br />

which Framatome is one of the key<br />

actors, as a part of the EDF Group.<br />

Framatome, the designer of this<br />

Generation III+ reactor, is proud, as I<br />

am proud, of this first start up, which<br />

underscores and rewards the years of<br />

engineering devoted to achieving this<br />

success alongside our client TNPJVC.<br />

As one of the largest commercial contracts<br />

ever granted to the French<br />

nuclear sector and, more generally,<br />

in the history of the civil nuclear industry,<br />

the Taishan 1 & 2 project confirms<br />

Framatome’s position as a major<br />

nuclear actor. On this project, we have<br />

handled the design engineering, the<br />

| | Framatome and the EPR reactor: a robust history and the passion it takes to succeed.<br />

View of the Taishan site in China.<br />

supply of the nuclear islands, and the<br />

provision of the fuel assemblies, as<br />

well as related technology transfers.<br />

Today, Framatome is involved in<br />

the Today, Framatome is involved in<br />

the six EPR reactors under construction<br />

worldwide: Taishan 1&2 in China,<br />

Olkiluoto 3 in Finland, Flamanville 3<br />

in France and Hinkley Point C in the<br />

United Kingdom. The EPR reactor,<br />

specified for a 60-year operating lifetime<br />

and with a capacity of 1,650<br />

MWe, is the first Generation III+ pressurized<br />

water reactor and has been<br />

designed to deliver unsurpassed levels<br />

of safety, durability and performance.<br />

All of Framatome’s expertise in<br />

nuclear project management and our<br />

lessons learned from the construction<br />

of numerous nuclear facilities in<br />

France and around the world, have<br />

gone into this genuine “first-of- a-<br />

kind” reactor model. The EPR therefore<br />

benefits from decades of research<br />

and development aimed at ensuring<br />

the safe and secure operation of the<br />

reactor. The EPR has been designed to<br />

minimize its environmental footprint<br />

and optimize waste management and<br />

the exposure of its operators and<br />

maintenance personnel.<br />

As the reactor designer, Framatome<br />

has brought all its experience to bear<br />

in the field of licensing alongside a<br />

great number of regulatory bodies,<br />

particularly in France, Finland, China,<br />

News


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

the United Kingdom and the United<br />

States.<br />

Framatome makes a point of<br />

supporting its customers in the startup<br />

of its EPR reactors and places its<br />

depths of competencies at the disposal<br />

of operators to help drive major new<br />

build projects. So that today, so that<br />

tomorrow, nuclear energy is and shall<br />

remain a strategic choice for lowcarbon<br />

and ever more reliable, safe<br />

and competitive electricity.”<br />

| | www.framatome.com<br />

Westinghouse AP1000 plant<br />

to load fuel<br />

(westinghouse) Westinghouse Electric<br />

Company, China State Nuclear Power<br />

Technology Corporation (SNPTC)<br />

and CNNC Sanmen Nuclear Power<br />

Company Limited (SMNPC) announced<br />

in April that the world’s first<br />

unit of AP1000 nuclear power plant<br />

located in Sanmen, Zhejiang Province,<br />

China, has received the fuel load permit<br />

from China’s National Nuclear<br />

Safety Administration (NNSA) and has<br />

commenced initial fuel loading.<br />

“Today we have reached a tremendous<br />

milestone for Westinghouse and<br />

our AP1000 plant technology,” said<br />

José Emeterio Gutiérrez, Westinghouse<br />

president and chief executive<br />

officer. “This is the next major step in<br />

delivering the world’s first AP1000<br />

plant to our customer and demonstrating<br />

the benefits of our advanced<br />

passive safety technology to the<br />

world.”<br />

Sanmen Unit 1 has successfully<br />

completed all the necessary functional<br />

tests as well as technical, safety and<br />

Chinese regulatory reviews. The fuel<br />

load process will be followed by initial<br />

criticality, initial synchronization to<br />

the electrical grid, and conservative,<br />

step by step, power ascension testing,<br />

until all testing is safely and successfully<br />

completed at 100% power.<br />

“This major project milestone<br />

marks the start of the final commissioning<br />

program for Sanmen Unit 1,”<br />

said David Durham, Westinghouse<br />

New Projects Business senior vice<br />

president. “I am confident that our<br />

teams will continue to operate at the<br />

highest levels – at Sanmen, as well as<br />

the Haiyang and Vogtle projects and<br />

in our ongoing support of the worldwide<br />

operating fleet.”<br />

Commenting on Westinghouse’s<br />

partnership with the Chinese government<br />

and suppliers as key contributors<br />

to the successful delivery of clean<br />

energy, Gavin Liu, president – Asia<br />

Region stated, “Westinghouse is<br />

proud to be a partner in China’s<br />

| | Westinghouse Sanmen (China) AP1000 plant to load fuel.<br />

forward-looking nuclear energy<br />

program, an effort that will provide<br />

clean-air electricity to power China’s<br />

economy. Through technology transfer,<br />

localization and infrastructure<br />

development, Westinghouse continues<br />

to collaborate with our Chinese<br />

partners and supports the development<br />

of China’s nuclear power<br />

industry.”<br />

In 20<strong>07</strong>, Westinghouse successfully<br />

won the bid for China’s generation<br />

III+ nuclear power projects to build<br />

two units of AP1000 reactors in Sanmen,<br />

Zhejiang Province and two units<br />

in Haiyang, Shandong Province. The<br />

company has two additional units<br />

currently under construction at the<br />

Vogtle Electric Generating Plant near<br />

Waynesboro, Georgia.<br />

First criticality of the reactor is<br />

expected to be achieved in JUne/July<br />

<strong>2018</strong>.<br />

| | www.westinghousenuclear.com<br />

Nuclear pioneers looking<br />

to solve our most pressing<br />

challenges<br />

• New “beyond electricity” capabilities<br />

include process heat, deep<br />

decarbonization<br />

• Several advanced reactor designs<br />

moving toward regulatory approval<br />

• Novel uses for advanced nuclear<br />

technologies will improve their<br />

economics<br />

• “When TerraPower was formed 12<br />

years ago, we were not a nuclear<br />

reactor developer. What we were<br />

looking to do was to solve energy<br />

poverty for one billion people and<br />

to decarbonize the world.”<br />

That was TerraPower’s President<br />

Chris Levesque, speaking to a rapt<br />

crowd at this year’s Nuclear Energy<br />

Assembly (NEA), NEI’s annual conference.<br />

No fewer than four panels<br />

at the event drew packed audiences<br />

excited to hear what the new types<br />

of reactors just over the horizon<br />

will bring.<br />

More than 40 companies and research<br />

institutions are investigating<br />

small modular reactor (SMR) and<br />

advanced nuclear reactor concepts.<br />

And more are on the way.<br />

On NEA’s first day, Dominion<br />

Energy announced it is investing in<br />

GE Hitachi Nuclear Energy’s brandnew<br />

BWRX-300 SMR design. “The<br />

BWRX-300 represents a significant<br />

improvement in the economics of new<br />

nuclear, an imperative for the longterm<br />

viability of the industry,” GE<br />

Hitachi Executive Vice President of<br />

Nuclear Plant Projects Jon Ball said.<br />

But one of the main advantages of<br />

advanced nuclear technologies is the<br />

new and innovative uses they offer<br />

beyond generating electricity. Their<br />

ability to operate at higher temperatures<br />

makes them available for industries<br />

needing process heat for chemicals<br />

production, desalination and<br />

hydrogen production.<br />

Utah Associated Municipal Power<br />

Systems (UAMPS) is teaming with<br />

small modular reactor developer<br />

NuScale Power LLC to build a power<br />

plant at the Idaho National Laboratory<br />

in the 2020s. UAMPS Chief<br />

Executive Officer Douglas Hunter<br />

said NuScale’s small footprint and<br />

enhanced safety will allow its<br />

industrial customers to make the<br />

most of the reactors’ process heat by<br />

moving “right up to our fence line.”<br />

Kathryn McCarthy, vice president<br />

for research and development at<br />

Canadian Nuclear Laboratories<br />

(CNL), said one potential new revenue<br />

stream for SMRs in Canada is producing<br />

hydrogen to decarbonize<br />

the transportation sector, including<br />

long-distance trucks, trains and the<br />

Toronto light rail system. CNL also is<br />

looking at how nuclear plants can<br />

operate in load-following mode to<br />

better balance intermittent wind and<br />

solar generation.<br />

Levesque said TerraPower’s Traveling<br />

Wave Reactor design is now<br />

moving out of the research phase and<br />

entering the test phase, with a view to<br />

obtaining regulatory approvals from<br />

the U.S. Nuclear Regulatory Commission<br />

or China’s National Nuclear<br />

Safety Administration. The company<br />

also is working on a molten chloride<br />

fast reactor concept and has several<br />

domestic and overseas partners on<br />

both projects.<br />

411<br />

NEWS<br />

News


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

412<br />

NEWS<br />

*)<br />

Net-based values<br />

(Czech and Swiss<br />

nuclear power<br />

plants gross-based)<br />

1)<br />

Refueling<br />

2)<br />

Inspection<br />

3)<br />

Repair<br />

4)<br />

Stretch-out-operation<br />

5)<br />

Stretch-in-operation<br />

6)<br />

Hereof traction supply<br />

7)<br />

Incl. steam supply<br />

8)<br />

New nominal<br />

capacity since<br />

January 2016<br />

9)<br />

Data for the Leibstadt<br />

(CH) NPP will<br />

be published in a<br />

further issue of <strong>atw</strong><br />

BWR: Boiling<br />

Water Reactor<br />

PWR: Pressurised<br />

Water Reactor<br />

Source: VGB<br />

“Advanced reactor development is<br />

a heavy lift and we need talent, capital<br />

and intellectual property collaboration<br />

from more than one country.<br />

Technical primacy no longer has to be<br />

confined to one country – these are<br />

global projects that need global resources,”<br />

Levesque said.<br />

The Electric Power Research Institute<br />

(EPRI) recently released a report<br />

on the economic viability of advanced<br />

reactor designs, which feature fewer<br />

and simpler systems, components and<br />

buildings and can be built cheaper<br />

and quicker. “The good news is that a<br />

lot of these technologies are headed to<br />

the lower end of the cost spectrum,”<br />

said Tina Taylor, EPRI’s senior director<br />

of research and development and deputy<br />

chief nuclear officer.<br />

| | www.nei.org<br />

World<br />

IEA: Only 4 out of 38 cleanenergy<br />

technologies are on<br />

track to meet long-term<br />

climate goals<br />

(iea) The International Energy Agency’s<br />

new and most comprehensive<br />

analysis of the clean-energy transition<br />

finds that only 4 out of 38 energy<br />

technologies and sectors were on track<br />

to meet long-term climate, energy<br />

access and air pollution goals in 2017.<br />

According to the IEA report and<br />

website www.iea.org/tcep/ nunclear<br />

power is part of the clean-energy technologies<br />

but more efforts are needed<br />

for expansion.<br />

The findings are part of the IEA’s<br />

latest Tracking Clean Energy Progress<br />

(TCEP), a newly updated website<br />

released today that assesses the latest<br />

progress made by key energy technologies,<br />

and how quickly each technology<br />

is moving towards the goals of<br />

the IEA’s Sustainable Development<br />

Scenario (SDS).<br />

Some technologies made tremendous<br />

progress in 2017, with solar PV<br />

seeing record deployment, LEDs<br />

quickly becoming the dominant source<br />

of lighting in the residential sector,<br />

and electric vehicle sales jumping by<br />

54%. But IEA analysis finds that most<br />

technologies are not on track to meet<br />

long-term sustainability goals. Energy<br />

efficiency improvements, for example,<br />

have slowed and progress on key technologies<br />

like carbon capture and storage<br />

remains stalled. This contributed<br />

to an increase in global energy-related<br />

CO 2 emissions of 1.4% last year.<br />

Operating Results January <strong>2018</strong><br />

Plant name Country Nominal<br />

capacity<br />

Type<br />

gross<br />

[MW]<br />

net<br />

[MW]<br />

Operating<br />

time<br />

generator<br />

[h]<br />

Energy generated. gross<br />

[MWh]<br />

Month Year Since<br />

commissioning<br />

Time availability<br />

[%]<br />

Energy availability<br />

[%] *) Energy utilisation<br />

[%] *)<br />

Month Year Month Year Month Year<br />

OL1 Olkiluoto BWR FI 910 880 744 682 567 682 567 255 336 753 100.00 100.00 99.77 99.77 100.82 100.82<br />

OL2 Olkiluoto BWR FI 910 880 744 688 417 688 417 244 987 599 100.00 100.00 99.92 99.92 100.58 100.58<br />

KCB Borssele PWR NL 512 484 744 381 482 381 482 158 588 401 99.82 99.82 99.82 99.82 100.47 100.47<br />

KKB 1 Beznau 1,2,7) PWR CH 380 365 0 0 0 124 746 087 0 0 0 0 0 0<br />

KKB 2 Beznau 7) PWR CH 380 365 744 285 615 285 615 131 450 488 100.00 100.00 100.00 100.00 101.05 101.05<br />

KKG Gösgen 7) PWR CH 1060 1010 744 749 519 749 519 305 944 106 100.00 100.00 99.98 99.98 95.04 95.04<br />

KKM Mühleberg BWR CH 390 373 744 287 530 287 530 124 625 675 100.00 100.00 99.89 99.89 99.09 99.09<br />

CNT-I Trillo PWR ES 1066 1003 744 789 686 789 686 239 814 110 100.00 100.00 100.00 100.00 99.19 99.19<br />

Dukovany B1 PWR CZ 500 473 744 373 503 373 503 109 003 986 100.00 100.00 99.88 99.88 100.40 100.40<br />

Dukovany B2 PWR CZ 500 473 617 3<strong>07</strong> 527 3<strong>07</strong> 527 104 930 065 82.93 82.93 82.12 82.12 82.67 82.67<br />

Dukovany B3 PWR CZ 500 473 744 370 166 370 166 102 992 593 100.00 100.00 100.00 100.00 99.51 99.51<br />

Dukovany B4 PWR CZ 500 473 744 371 602 371 602 103 643 343 100.00 100.00 100.00 100.00 99.89 99.89<br />

Temelin B1 1,2) PWR CZ 1080 1030 0 0 0 106 481 294 0 0 0 0 0 0<br />

Temelin B2 PWR CZ 1080 1030 744 809 669 809 669 102 299 615 100.00 100.00 100.00 100.00 100.77 100.77<br />

Doel 1 PWR BE 454 433 744 338 599 338 599 134 553 346 100.00 100.00 99.99 99.99 100.21 100.21<br />

Doel 2 PWR BE 454 433 744 340 286 340 286 132 592 554 100.00 100.00 99.72 99.72 100.49 100.49<br />

Doel 3 3) PWR BE 1056 1006 0 0 0 251 169 221 0 0 0 0 0 0<br />

Doel 4 PWR BE 1084 1033 744 814 535 814 535 255 360 377 100.00 100.00 100.00 100.00 99.95 99.95<br />

Tihange 1 PWR BE 1009 962 744 761 737 761 737 291 600 613 100.00 100.00 100.00 100.00 101.82 101.82<br />

Tihange 2 PWR BE 1055 1008 744 783 542 783 542 249 733 <strong>07</strong>9 100.00 100.00 99.06 99.06 100.36 100.36<br />

Tihange 3 PWR BE 1089 1038 744 813 456 813 456 269 708 286 100.00 100.00 100.00 100.00 100.36 100.36<br />

Operating Results April <strong>2018</strong><br />

Plant name<br />

Type<br />

Nominal<br />

capacity<br />

gross<br />

[MW]<br />

net<br />

[MW]<br />

Operating<br />

time<br />

generator<br />

[h]<br />

Energy generated, gross<br />

[MWh]<br />

Time availability<br />

[%]<br />

Energy availability Energy utilisation<br />

[%] *) [%] *)<br />

Month Year Since Month Year Month Year Month Year<br />

commissioning<br />

KBR Brokdorf 1,2) DWR 1480 1410 5 3 166 2 859 287 343 051 345 0.75 75.18 0.29 70.54 0.29 66.85<br />

KKE Emsland 4) DWR 1406 1335 720 1 005 788 4 012 463 339 335 746 100.00 100.00 100.00 100.00 99.40 99.17<br />

KWG Grohnde DWR 1430 1360 720 968 379 3 021 184 369 648 763 100.00 78.29 100.00 75.54 93.51 72.95<br />

KRB C Gundremmingen 1,4) SWR 1344 1288 487 543 440 3 387 209 323 967 102 67.69 91.92 67.<strong>07</strong> 91.63 55.76 87.00<br />

KKI-2 Isar DWR 1485 1410 720 1 040 580 4 223 814 345 822 137 100.00 100.00 99.98 99.99 96.97 98.53<br />

GKN-II Neckarwestheim DWR 1400 1310 720 984 700 3 962 700 324 085 834 100.00 100.00 100.00 99.84 97.87 98.58<br />

KKP-2 Philippsburg 4) DWR 1468 1402 720 932 322 4 049 510 359 217 026 100.00 100.00 99.73 99.91 86.41 94.30<br />

News


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

TCEP provides a comprehensive,<br />

rigorous and up-to-date analysis of<br />

the status of the clean-energy transition<br />

across a full range of technologies<br />

and sectors, their recent progress, deployment<br />

rates, investment levels, and<br />

innovation needs. It is the result of<br />

a bottom-up approach backed by<br />

the IEA’s unique understanding of<br />

markets, modeling and energy statistics<br />

across all fuels and technologies,<br />

and its extensive global technology<br />

network, totaling 6,000 researchers<br />

across nearly 40 technology collaboration<br />

programmes.<br />

The analysis includes a series of<br />

high-level indicators that provide an<br />

overall assessment of clean energy<br />

trends and highlight the most important<br />

actions needed for the complex<br />

energy sector transformation.<br />

For the first time, the analysis also<br />

highlights more than 100 key innovation<br />

gaps that need to be addressed<br />

to speed up the development and<br />

deployment of these clean energy<br />

technologies. It provides an extensive<br />

analysis of public and private clean<br />

energy research and development<br />

investment. It found that total public<br />

spending on low-carbon energy technology<br />

innovation rose 13% in 2017,<br />

to more than USD 20 billion.<br />

“There is a critical need for more<br />

vigorous action by governments,<br />

industry, and other stakeholders to<br />

| | IEA: Only 4 out of 38 clean-energy technologies are on track to meet long-term climate goals. IEA's website.<br />

drive advances in energy technologies<br />

that reduce greenhouse gas emissions,”<br />

said Dr Fatih Birol, the IEA’s<br />

Executive Director. “The world doesn’t<br />

have an energy problem but an<br />

emissions problem, and this is where<br />

we should focus our efforts.”<br />

A total of 11 of 38 technologies<br />

surveyed by the IEA were significantly<br />

not on track. In particular, unabated<br />

coal electricity generation (meaning<br />

generation without Carbon Capture,<br />

Utilisation and Storage, or CCUS),<br />

which is responsible for 72% of power<br />

sector emissions, rebounded in 2017<br />

after falling over the last three years.<br />

Meanwhile, two technologies,<br />

onshore wind and energy storage,<br />

were downgraded this year, as their<br />

progress slowed. This brought the<br />

number of technologies “in need of<br />

improvement” to a total of 23.<br />

413<br />

NEWS<br />

Operating Results February <strong>2018</strong><br />

Plant name Country Nominal<br />

capacity<br />

Type<br />

gross<br />

[MW]<br />

net<br />

[MW]<br />

Operating<br />

time<br />

generator<br />

[h]<br />

Energy generated. gross<br />

[MWh]<br />

Month Year Since<br />

commissioning<br />

Time availability<br />

[%]<br />

Energy availability<br />

[%] *) Energy utilisation<br />

[%] *)<br />

Month Year Month Year Month Year<br />

OL1 Olkiluoto BWR FI 910 880 672 618 566 1 301 132 255 955 319 100.00 100.00 100.00 99.88 101.15 100.98<br />

OL2 Olkiluoto BWR FI 910 880 672 620 840 1 309 258 245 608 439 100.00 100.00 99.85 99.89 100.42 100.50<br />

KCB Borssele PWR NL 512 484 672 344 895 726 377 158 933 296 99.87 99.84 99.87 99.84 100.56 100.51<br />

KKB 1 Beznau 1,2,7) PWR CH 380 365 0 0 0 124 746 087 0 0 0 0 0 0<br />

KKB 2 Beznau 7) PWR CH 380 365 672 258 171 543 786 131 708 659 100.00 100.00 100.00 100.00 101.09 101.<strong>07</strong><br />

KKG Gösgen 7) PWR CH 1060 1010 672 720 590 1 515 109 306 709 696 100.00 100.00 99.98 99.98 101.16 100.94<br />

KKM Mühleberg BWR CH 390 373 672 259 910 547 440 124 885 585 100.00 100.00 99.95 99.92 99.17 99.13<br />

CNT-I Trillo PWR ES 1066 1003 672 713 087 1 502 773 240 527 197 100.00 100.00 100.00 100.00 99.11 99.15<br />

Dukovany B1 PWR CZ 500 473 672 338 390 711 893 109 342 375 100.00 100.00 100.00 99.93 100.71 100.55<br />

Dukovany B2 PWR CZ 500 473 672 338 186 645 713 105 268 250 100.00 91.03 100.00 90.61 100.65 91.20<br />

Dukovany B3 PWR CZ 500 473 672 335 837 706 003 103 328 430 100.00 100.00 100.00 100.00 99.95 99.72<br />

Dukovany B4 PWR CZ 500 473 672 336 572 708 174 103 979 916 100.00 100.00 100.00 100.00 100.17 100.02<br />

Temelin B1 1,2) PWR CZ 1080 1030 0 0 0 106 481 294 0 0 0 0 0 0<br />

Temelin B2 PWR CZ 1080 1030 672 733 731 1 543 400 103 033 346 100.00 100.00 100.00 100.00 101.10 100.92<br />

Doel 1 PWR BE 454 433 672 306 486 645 085 134 859 832 100.00 100.00 99.99 99.99 100.36 100.28<br />

Doel 2 PWR BE 454 433 672 3<strong>07</strong> 293 647 580 132 899 847 100.00 100.00 99.99 99.85 100.58 100.54<br />

Doel 3 3) PWR BE 1056 1006 0 0 0 251 169 221 0 0 0 0 0 0<br />

Doel 4 PWR BE 1084 1033 672 740 003 1 554 538 256 100 379 100.00 100.00 100.00 100.00 100.59 100.25<br />

Tihange 1 PWR BE 1009 962 672 690 038 1 451 775 292 290 651 100.00 100.00 100.00 100.00 102.21 102.01<br />

Tihange 2 PWR BE 1055 1008 672 719 012 1 502 554 250 452 091 100.00 100.00 100.00 99.51 102.06 101.17<br />

Tihange 3 PWR BE 1089 1038 672 734 674 1 548 130 270 442 960 100.00 100.00 99.99 100.00 100.30 100.33<br />

News


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

414<br />

NEWS<br />

This year, the TCEP tracks progress<br />

against the Sustainable Development<br />

Scenario, introduced in the World<br />

Energy Outlook 2017, which depicts a<br />

rapid but achievable transformation<br />

of the energy sector. It outlines a path<br />

to limiting the rise of average global<br />

temperatures to “well below 2°C,” as<br />

specified in the Paris Agreement, as<br />

well as increasing energy access<br />

around the world and reducing air<br />

pollution.<br />

In this scenario, meeting longterm<br />

sustainability goals requires an<br />

ambitious combination of more<br />

energy efficient buildings, industry<br />

and transport, and more renewables<br />

and flexibility in power.<br />

The findings this year are compiled<br />

in an updated website, which provides<br />

easy navigation across technologies<br />

and sectors, and draws links across<br />

the IEA’s resources. The report will<br />

be updated throughout the year as<br />

new data becomes available, and will<br />

be complemented by cutting-edge<br />

analysis and commentary on notable<br />

developments on the global clean<br />

energy transition.<br />

| | www.iea.org/tcep/<br />

Reactors<br />

NEI. New report sees threat<br />

of blackouts if nuclear<br />

retirements continue<br />

• Gas pipeline failure could lead to<br />

significant disruption in Midwest,<br />

Mid-Atlantic<br />

• White House says power plant<br />

retirements are negatively impacting<br />

resilience of grid<br />

• Preservation of nuclear power<br />

plants could lead to added resilience<br />

(nei) A new NEI study conducted by<br />

ICF details how a future gas pipeline<br />

disruption, combined with continued<br />

nuclear power plant retirements<br />

and/or failure to improve natural gas<br />

infrastructure, could lead to prolonged<br />

electricity service disruption<br />

in the areas served by the PJM Interconnection.<br />

The report comes as the Trump<br />

administration, the Federal Energy<br />

Regulatory Commission and PJM<br />

grapple with the issue of the electricity<br />

grid’s diminishing resilience<br />

due to premature nuclear power plant<br />

retirements.<br />

The ICF report finds that a disruption<br />

to natural gas pipelines would<br />

have a major, prolonged effect on electricity<br />

service in the Mid-Atlantic, if<br />

nuclear power plants are not there as a<br />

backup resource and/or natural gas<br />

infrasctructure is not enhanced.<br />

“Such an event could result in the<br />

loss of nearly 27 gigawatts [GW] of<br />

gas-fired generation, with 18 GW<br />

serving the PJM Mid-Atlantic area, depending<br />

on the severity and location<br />

of such event,” the ICF report says.<br />

“When combined with the retirement<br />

of a similar amount of nuclear<br />

capacity, the analysis implies such an<br />

event would put as much as 22 percent<br />

of the area’s load at risk of being<br />

shed in the highest load hours.”<br />

Earlier this month, the White<br />

House released a statement saying<br />

that “impending retirements of fuelsecure<br />

power facilities are leading<br />

to a rapid depletion of a critical part<br />

of our Nation’s energy mix, and impacting<br />

the resilience of our power<br />

grid.”<br />

According to the ICF report, during<br />

a gas pipeline disruption caused by<br />

extreme weather or equipment failure<br />

and lasting 60 days, the PJM service<br />

area would experience “load losses for<br />

more than 200 hours spread across as<br />

many as 34 days.”<br />

“Of the nearly 18 GW of gas-fired<br />

capacity that could be impacted by<br />

such an event, over 45 percent has no<br />

backup fuel capability and would be<br />

immediately unavailable during such<br />

an event,” the report says.<br />

The report examines a scenario,<br />

The Policy Case, in which nuclear<br />

power plants continue to run thanks<br />

to prudent state and federal policies.<br />

Under that scenario, nuclear power<br />

plants would be able to compensate<br />

for the losses in natural gas generation<br />

due to an unexpected interruption.<br />

“The nuclear capacity that remains<br />

online is able to offset the gas generation<br />

impacted by the infrastructure<br />

event, resulting in load being served<br />

in all hours over the 60-day period,”<br />

the report says.<br />

Nuclear power plants have a longterm<br />

supply of fuel onsite. A steady<br />

supply of fuel delivered via pipelines is<br />

necessary to generate electricity from<br />

natural gas. Some natural gas plants<br />

have the ability to run on oil as a<br />

backup fuel, but those supplies would<br />

only last for a handful of days before<br />

needing to be refilled.<br />

The steady supply of onsite fuel is<br />

one reason nuclear power plants are<br />

able to continue supplying electricity<br />

during extreme weather, including<br />

2017’s Hurricane Harvey in Texas.<br />

Last year, Energy Secretary Perry<br />

directed FERC to “take swift action”<br />

to address threats to the resiliency<br />

of the U.S. electric grid and issue a<br />

rule requiring organized markets to<br />

develop rules to compensate “fuelsecure”<br />

electricity generators for the<br />

resiliency they provide. FERC declined<br />

to adopt that proposed rulemaking,<br />

but the agency did open a new proceeding<br />

in which it directed regional<br />

transmission organizations (RTOs)<br />

and independent system operators<br />

(ISOs) to assess grid resilience and<br />

recommend actions. The ICF report<br />

has been submitted to FERC as part of<br />

this proceeding.<br />

Last month, 10,000 megawatts of<br />

nuclear generating capacity failed to<br />

clear PJM Interconnection’s annual<br />

capacity auction. NEI President and<br />

CEO Maria Korsnick said that result<br />

showed the urgent need for electricity<br />

market reform.<br />

NEI Senior Director of Policy<br />

Development Matt Crozat adds that<br />

mounting evidence points to serious<br />

underlying flaws in how electricity<br />

markets are set up.<br />

“This new study underscores<br />

nuclear power’s vital role in ensuring<br />

a reliable and resilient supply of<br />

electricity,” Crozat said.<br />

“Policymakers and administrators<br />

interested in continuing and strengthening<br />

the resilience of America’s grid<br />

should act promptly to ensure nuclear<br />

power plants are fairly compensated<br />

in the marketplace for the reliable,<br />

emission-free electricity they provide.”<br />

| | www.nei.org<br />

Fuel Management<br />

and Disposal<br />

U.S.: Huge bipartisan<br />

majority passes Used Fuel<br />

Management Bill in House<br />

• Republicans and Democrats join<br />

together to pass bill 340-72<br />

• Passage major victory for Rep.<br />

Shimkus; sets up possible Senate<br />

legislation later this year<br />

• Bill expedites Yucca Mountain licensing,<br />

provides for centralized<br />

interim storage<br />

The U.S. House of Representatives<br />

made overdue progress toward<br />

solving the long-standing issue of<br />

used fuel management, with the passage<br />

of the Nuclear Waste Policy<br />

Amendments Act of <strong>2018</strong> (HR 3053)<br />

with a bipartisan vote of 340-72.<br />

Rep. John Shimkus (R-Ill.), chairman<br />

of the House Energy and<br />

Commerce Committee’s environment<br />

News


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

subcommittee, authored the bill “to<br />

reform the used fuel management<br />

and disposal program to assure its<br />

sustainability going forward.” A<br />

previous version of the bill passed<br />

the committee last year by a vote<br />

of 49-4.<br />

The Nuclear Energy Institute<br />

lauded the passage of the bill.<br />

“Today’s bipartisan vote represents<br />

overdue progress towards solving a<br />

longstanding issue. House passage of<br />

the Nuclear Waste Policy Amendments<br />

Act begins a much needed step<br />

forward regarding reform to implement,<br />

at long last, the federal government’s<br />

statutory obligation to manage<br />

used nuclear fuel,” NEI President and<br />

Chief Executive Officer Maria Korsnick<br />

said.<br />

“Earlier this year we marked a<br />

troubling milestone: 20 years of<br />

government failure to meet its legal<br />

obligation to take possession of used<br />

fuel. This abdication of responsibility<br />

has harmed electricity consumers and<br />

U.S. taxpayers.”<br />

The original Nuclear Waste Policy<br />

Act became law in 1982, creating a<br />

structured program requiring the<br />

U.S. Department of Energy to begin<br />

removing used fuel from reactor sites<br />

in January 1998. To cover the program’s<br />

costs, DOE and reactor owners<br />

entered into contracts under which<br />

owners paid a fee of one-tenth of a<br />

cent per kilowatt-hour of nuclear electricity<br />

generated into a Nuclear Waste<br />

Fund. To date, electricity consumers<br />

have paid more than $40 billion into<br />

the fund and with interest accruing<br />

more than $1.7 billion annually, a<br />

balance of more than $38 billion<br />

remains.<br />

Since 1987, DOE focused on developing<br />

a repository at Yucca Mountain,<br />

Nevada, spending approximately $10<br />

billion on the program and submitting<br />

a license application to the U.S.<br />

Nuclear Regulatory Commission in<br />

2008. In 2010, DOE declared Yucca<br />

Mountain “unworkable” and unsuccessfully<br />

attempted to withdraw its<br />

application.<br />

Since DOE missed the January<br />

1998 deadlines, the courts have<br />

held the government liable for<br />

DOE’s inaction, awarding reactor<br />

owners damages for DOE’s failure<br />

to meet its January 1998 statutory<br />

deadline.<br />

“U.S. taxpayers have paid more<br />

than $7 billion in damages, and will<br />

continue to pay more than $2 million<br />

a day until the federal government<br />

moves the fuel from plant sites,”<br />

Korsnick noted.<br />

The technical staff of the NRC,<br />

after the court ordered it to complete<br />

its safety and environmental reviews<br />

of DOE’s application, found the<br />

repository in compliance with all<br />

applicable regulations. The court<br />

also ordered DOE to stop collecting<br />

Nuclear Waste Fund fees, which it<br />

did starting mid-2014.<br />

This bill includes provisions that<br />

would move the Yucca Mountain project<br />

forward by helping to resolve key<br />

issues such as land withdrawal and<br />

infrastructure issues.<br />

It would also increase the statutory<br />

limit for used fuel to be placed in the<br />

repository to 110,000 metric tons<br />

from the present 70,000 metric tons<br />

and clarify DOE’s authority to advance<br />

privately owned consolidated interim<br />

storage facilities.<br />

Additionally, it provides a pathway<br />

for bringing Nevada and the local<br />

communities to the table to discuss<br />

benefits associated with these projects.<br />

The legislation also addresses<br />

Nuclear Waste Fund fees, preventing<br />

DOE from collecting any fees until<br />

the NRC issues a final determination<br />

on the Yucca Mountain construction<br />

authorization application. It also<br />

restricts DOE’s fee collections to no<br />

more than 90 percent of the amount<br />

Congress appropriates for the program<br />

in any given year.<br />

Support for the bill came from<br />

many stakeholders, including a joint<br />

letter to Congress from NEI, the<br />

American Public Power Association,<br />

the Edison Electric Institute and the<br />

National Rural Electric Cooperation<br />

Association. Other letters of support<br />

were transmitted from labor unions,<br />

including the AFL-CIO, the International<br />

Brotherhood of Electrical<br />

Workers and North America’s Building<br />

Trades Unions.<br />

The Senate has legislation of its<br />

own that could be introduced later<br />

this year.<br />

“The industry recognizes that the<br />

House and Senate have differing<br />

views on how to reform the used fuel<br />

program. We encourage the two<br />

bodies to continue to advance their<br />

respective proposals and reach a<br />

compromise by the end of the year,”<br />

Korsnick said.<br />

“We look forward to continuing<br />

to work with lawmakers to reach<br />

bipartisan consensus on the best<br />

approach for the long-term management<br />

of the nation’s used fuel. We<br />

urge lawmakers to ensure that resulting<br />

legislation protects both electricity<br />

consumers and taxpayers.”<br />

| | www.congress.gov, www.nei.org,<br />

Research<br />

DOE awards $24 million to<br />

10 advanced nuclear projects<br />

Awards focus on boosting efficiency<br />

and safety, lowering costs of advanced<br />

reactor designs<br />

Reactor control, load-following<br />

and prefabrication techniques win<br />

awards<br />

DOE’s Perry: Awards will help<br />

America retain its technological edge<br />

In yet another example of the<br />

current administration’s continuing<br />

enthusiasm for nuclear energy, the<br />

U.S. Department of Energy this week<br />

announced up to $24 million to fund<br />

10 projects that will boost advanced<br />

nuclear reactor designs.<br />

The awards play a fundamental<br />

role in ensuring America retains its<br />

technological leadership in commercial<br />

nuclear energy, the Nuclear<br />

Energy Institute said.<br />

“It’s gratifying to see DOE taking a<br />

leading role in investing in the longterm<br />

future of this critical American<br />

technology that enhances energy<br />

security and boosts grid resilience<br />

while lowering emissions,” NEI Senior<br />

Technical Advisor for New Reactor<br />

and Advanced Technology Everett<br />

Redmond said.<br />

The awards are part of a new<br />

Advanced Research Projects Agency-<br />

Energy (ARPA-E) program, Modeling-<br />

Enhanced Innovations Trailblazing<br />

Nuclear Energy Reinvigoration<br />

(MEITNER), which will identify and<br />

develop technologies that enable<br />

designs for lower cost, more easily<br />

constructible and safer advanced<br />

nuclear reactors.<br />

“Nuclear energy is an essential<br />

component of the U.S. energy mix,<br />

and by teaming up with the private<br />

sector to reduce costs and improve<br />

safety, we are keeping America ahead<br />

of the curve in advanced reactor<br />

design and technology,” U.S. Secretary<br />

of Energy Rick Perry said in the<br />

DOE statement.<br />

“These next-generation ARPA‐E<br />

technologies help us maintain<br />

our competitive, technological edge<br />

globally, while improving the resilience<br />

of the grid and helping provide<br />

reliable, baseload electricity to each<br />

and every American.”<br />

Many of the awards focus on<br />

improving the efficiency and safety of<br />

several advanced nuclear technology<br />

designs now under development. The<br />

designs come in a range of sizes, from<br />

a couple of megawatts to more than<br />

a 1,000 megawatts of generating<br />

capacity. They feature a range of<br />

415<br />

NEWS<br />

News


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

416<br />

NEWS<br />

| | Mounting of a battery cell in the instrument ANTARES at FRM II.<br />

Photo: Wenzel Schürmann / TUMwebsite.<br />

coolants including high-temperature<br />

gas, molten salt and liquid metal.<br />

Some of these reactors may even be<br />

capable of recovering and reusing elements<br />

in used fuel to produce even<br />

more energy.<br />

The winning project teams will<br />

have access to DOE’s modeling and<br />

simulation resources as they develop<br />

their concepts and will coordinate regularly<br />

with experts from across DOE<br />

and the national laboratory system.<br />

The winning projects and their<br />

award amounts include:<br />

• A novel circulation pump for<br />

molten salt reactors to improve<br />

plant performance, increase pump<br />

lifetime and reduce cost will be<br />

developed by Terrestrial Energy<br />

USA ($3,150,000).<br />

• A new reactor control technology<br />

to enhance passive safety and<br />

reduce costs for the molten salt<br />

reactor and other designs being<br />

developed by Yellowstone Energy<br />

($2,599,185).<br />

• A cost-saving construction method<br />

for concrete reactor components<br />

being developed by General<br />

Atomics that will use factory<br />

pre-cast modules of ultra highstrength<br />

concrete ($1,532,752).<br />

• General Atomics also is developing<br />

a detailed, dynamic model of a<br />

nuclear power system with rapid<br />

load-following capability, enabling<br />

grid synergies with renewable wind<br />

and solar sources ($1,455,762).<br />

• Westinghouse Electric Co. will<br />

develop a “solid core block” of<br />

materials that will self-regulate<br />

the reaction rate in a nuclear<br />

reactor, allowing it to achieve safe<br />

shutdown without external power<br />

or operator intervention<br />

($5,000,000).<br />

An overarching theme of the<br />

awards is the drive to increase the<br />

efficiency and economic performance<br />

of advanced reactor technologies<br />

under development, while lowering<br />

their construction costs, Redmond<br />

noted.<br />

“New energy technologies can improve<br />

our quality of life, benefit the<br />

environment and create jobs, but they<br />

must also be economically viable if<br />

they are to see wide commercialization,”<br />

Redmond said.<br />

“These awards acknowledge the<br />

fact that advanced nuclear technologies<br />

must not only be groundbreaking,<br />

they must also be affordable.”<br />

| | www.nei.org, www.energy.gov<br />

Neutrons pave the way to<br />

accelerated production of<br />

lithium-ion cells<br />

(frmii) Developers from Bosch and<br />

scientists at the Technical University<br />

of Munich (TUM) are using neutrons<br />

to analyze the filling of lithium ion<br />

batteries for hybrid cars with electrolytes.<br />

Their experiments show that<br />

electrodes are wetted twice as fast in a<br />

vacuum as under normal pressure.<br />

One of the most critical and<br />

time-consuming processes in battery<br />

production is the filling of lithium<br />

cells with electrolyte fluid following<br />

the placement the of electrodes in a<br />

battery cell. While the actual filling<br />

process takes only a few seconds,<br />

battery manufacturers often wait<br />

several hours to ensure the liquid is<br />

fully absorbed into the pores of the<br />

electrode stack.<br />

The fact that neutrons are hardly<br />

absorbed by the metal battery housing<br />

makes them ideal for analyzing batteries.<br />

That is why Bosch employees,<br />

in collaboration with scientists from<br />

the TU Munich and the University of<br />

Erlangen-Nuremberg, investigated<br />

the filling process at the neutron<br />

i maging and tomography facility<br />

ANTARES of the research neutron<br />

source FRM II.<br />

Faster in a vacuum<br />

Manufacturers of lithium cells often<br />

fill the empty cells in a vacuum. The<br />

process is monitored indirectly using<br />

resistance measurements. “To make<br />

sure that all the pores of the electrodes<br />

are filled with the electrolyte,<br />

manufacturers build in large safety<br />

margins,” says Bosch developer<br />

Dr. Wolfgang Weydanz. “That costs<br />

time and money.”<br />

In the light of the neutrons, the<br />

scientists recognized that in a vacuum<br />

the electrodes were wetted completely<br />

in just over 50 minutes. Under normal<br />

pressure, this takes around 100<br />

minutes. The liquid spreads evenly in<br />

the battery cell from all four sides,<br />

from the outside in.<br />

In addition, the electrodes absorb<br />

ten percent less electrolyte under<br />

normal pressure. The culprit is gases<br />

that hinder the wetting process, as the<br />

scientists were able to demonstrate for<br />

the first time using the neutrons.<br />

| | mlz-garching.de/antares<br />

Company News<br />

Bilfinger awarded contract<br />

for superconducting magnetic<br />

modules<br />

(bilfinger) Bilfinger has received a<br />

major contract from GSI Helmholtzzentrum<br />

für Schwerionenforschung<br />

GmbH in Darmstadt, Germany, for<br />

the construction and delivery of 83<br />

superconducting magnetic modules<br />

along with twelve additional modules.<br />

The contract is valued at over €20<br />

million. The modules will be used<br />

in the SIS100 accelerator ring at<br />

the Facility for Antiproton and Ion<br />

Research (FAIR). FAIR is one of the<br />

world’s largest research projects with<br />

an investment volume of more than<br />

€1 billion.<br />

“Research facilities are crucial<br />

customers for us. I am therefore<br />

particularly pleased that we have been<br />

able to expand our partnership with<br />

GSI,” says Ronald Hepper, Managing<br />

Director of Bilfinger Noell. The<br />

Bilfinger subsidiary is also working<br />

with the Karlsruhe Institute of<br />

Technology and CERN, the European<br />

Organization for Nuclear Research,<br />

among other research facilities.<br />

News


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

| | Bilfinger awarded contract for superconducting magnetic modules. 3D view of the superconducting<br />

magnetic module (Picture: GSI)<br />

For more than ten years now,<br />

Bilfinger has been involved in the<br />

FAIR project. The FAIR accelerator<br />

will allow numerous experiments to<br />

be conducted to find out more about<br />

the structure of matter and the origin<br />

of the universe as well as to improve<br />

cancer therapy. The SIS100 accelerator<br />

ring generates the particle beams<br />

required for all these experiments.<br />

Bilfinger is currently producing a<br />

series of 110 superconducting dipole<br />

magnet modules for the SIS100.<br />

The basis for this is a prototype that<br />

Bilfinger also helped develop.<br />

The 83 superconducting magnetic<br />

modules which are the subject of the<br />

new order each consist of two magnet<br />

units, a vacuum vessel with a thermal<br />

shield, radiant tubes and other<br />

complex components. Each of these<br />

devices has a length of around 5.2<br />

meters and weighs over five tons.<br />

With their different structures, the<br />

different module types pose a logistic<br />

challenge. The twelve additional<br />

modules serve to connect superconducting<br />

magnet modules in the<br />

SIS100 particle accelerator.<br />

Delivery of the first superconducting<br />

magnetic modules is planned<br />

to start in early 2019.<br />

| | www.bilfinger.com<br />

Framatome partners with<br />

McAfee to support energy<br />

industry cybersecurity<br />

(framatome) Framatome signed an<br />

agreement with McAfee, the deviceto-cloud<br />

cybersecurity company, to<br />

distribute cybersecurity solutions to<br />

energy transmission, distribution<br />

and generation facilities worldwide.<br />

Together, Framatome and McAfee<br />

will work with these facilities to<br />

help protect their digital assets and<br />

support the reliable production of<br />

electricity.<br />

“In a rapidly evolving digital<br />

landscape, holistic and robust cybersecurity<br />

programs are critical to<br />

protecting nuclear energy facilities<br />

and electrical power and distribution<br />

infrastructure,” said Catherine Cornand,<br />

senior executive vice president<br />

of Framatome’s Installed Base Business<br />

Unit. “This partnership with<br />

McAfee will enhance our ability to<br />

provide customers with the right<br />

combination of cutting-edge technologies<br />

and expertise.”<br />

This partnership builds on the<br />

cybersecurity support Framatome<br />

provides to international power generation<br />

fleets and bulk electric system,<br />

allowing the company to deliver an<br />

even stronger suite of services to<br />

customers, backed by McAfee’s highly<br />

respected brand and cybersecurity<br />

products.<br />

“McAfee’s diverse client portfolio<br />

and global threat intelligence network<br />

give us a comprehensive and real-time<br />

view of cybersecurity threats,” said<br />

Tom Moore, vice president, World<br />

Wide Embedded Sales of McAfee.<br />

“We look forward to combining our<br />

significant knowledge base and<br />

time-tested, evolving solutions with<br />

Framatome’s experience and proficiency<br />

in the electric power industry<br />

to serve this unique customer base.”<br />

When combined with Framatome’s<br />

cyber products and services, the<br />

McAfee cybersecurity hardware,<br />

software, support and incident response<br />

services are a comprehensive<br />

solution to protect international<br />

digital systems from cyberattacks.<br />

This solution also helps meet international<br />

regulations.<br />

| | www.framatome.com<br />

NUKEM Technologies:<br />

Successful finalization of<br />

the ITER Deactivation study<br />

(nukem) ITER is a tokamak under construction<br />

in Cadarache, France. Its<br />

goal is to demonstrate the feasibility of<br />

producing energy by fusion reaction of<br />

Deuterium and Tritium. The machine<br />

should generate first plasma in December<br />

2025. Before construction is even<br />

finished, the deactivation and dismantling<br />

was analyzed already.<br />

For the ITER Deactivation study a<br />

consortium of the companies AMEC<br />

Foster Wheeler (now known as WOOD<br />

PLC and supported by AJR consulting)<br />

and NUKEM Technologies Engineering<br />

Services GmbH (NTES) was<br />

selected. Within the consortium<br />

French, UK, and German knowledge<br />

on nuclear issues was present.<br />

In close cooperation with ITER<br />

Organization about 100 documents<br />

needed to be mined for relevant<br />

information to get to a good understanding<br />

of the equipment which will<br />

be deactivated and dismantled after<br />

the end of plasma operations of ITER.<br />

The documents had sometimes several<br />

hundred pages (e.g. the Safety Report<br />

of ITER) or otherwise huge dimensions<br />

(e.g. the “Bill of materials” with<br />

information on materials used for IT-<br />

ER construction contains several<br />

hundred thousand cells …). The<br />

3D-Models of all facilities of ITER<br />

which will be under French nuclear<br />

legislation were essential for the<br />

analysis to get a good understanding<br />

not only on the equipment’s location<br />

and dimensions, but also on accessibility.<br />

Additional information on<br />

safety parameters of the rooms (radiation<br />

zones, ventilation zones etc.)<br />

needed to be brought together to<br />

better understand possible restrictions.<br />

Throughout the project the expertise<br />

of France, UK and Germany<br />

present in the consortium was used to<br />

estimate the working procedures and<br />

time requirements for all deactivation<br />

operations required. In some cases<br />

knowledge based assumptions where<br />

developed.<br />

For some parts of ITER the analysis<br />

was performed depending on the<br />

systems, while for others the analysis<br />

was performed on a Level by Level and<br />

Room by Room base. Due to the<br />

changes partly resulting from the<br />

first analysis results the basis of the<br />

analysis needed to be changed within<br />

the process. When needed, assumptions<br />

on the parameters of the equipment<br />

required for the deactivation<br />

analysis could be made based on the<br />

417<br />

NEWS<br />

News


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

418<br />

NEWS<br />

experience of the consortium and<br />

approved by ITER leading to a common<br />

basis for the analysis.<br />

The project’s success was based<br />

on the wide knowledge base provided<br />

by the participating companies. The<br />

frequent meetings within the consortium<br />

and with ITER staff were very<br />

helpful to get a clear understanding of<br />

the processes within all facilities. The<br />

cooperation was on a very good level<br />

of understanding of each other even<br />

with some surprises concerning<br />

different regulations on how to process<br />

or treat radiological issues. The<br />

sequencing of all necessary steps to<br />

deactivate the whole plant took into<br />

account not only tritiated waste<br />

treatment issues but always put safety<br />

first e.g. by establishing specific<br />

methods of operations. For example<br />

before any room is entered by<br />

personnel the first action is to<br />

decontaminate the rooms, if necessary<br />

using robots. The study does<br />

not take into account future possible<br />

dismantling methods but is based on<br />

existing methods.<br />

It was proven that the safe deactivation<br />

of ITER is possible. After the<br />

presentation of the results to ITER at<br />

the final meeting mid of March, ITER<br />

expressed its full satisfaction to the<br />

consortium team.<br />

| | www.nukemtechnologies.com<br />

Orano TN awarded a contract<br />

for the supply of dry storage<br />

casks and services in the USA<br />

(orano) Orano TN, the nuclear<br />

logistics subsidiary of Orano, has been<br />

selected by the American electric<br />

utility Omaha Public Power District<br />

(OPPD) for the final offload of more<br />

than 900 used fuel assemblies contained<br />

in the pool of its Fort Calhoun<br />

nuclear power station in Nebraska. To<br />

carry out this operation, Orano TN<br />

will supply 30 NUHOMS® dry storage<br />

systems and the associated “pool to<br />

pad” transfer services for several tens<br />

of millions of dollars.<br />

NUHOMS® canisters, already in<br />

use at the Fort Calhoun facility, are<br />

approved for both onsite storage<br />

and offsite transportation, ensuring<br />

long-term used fuel management.<br />

“We are proud to continue our<br />

nearly 15-year trusted relationship<br />

with our client OPPD and the Omaha<br />

community,” said Greg Vesey, Senior<br />

Vice President of Orano TN. “As<br />

before, our commitment is to transfer<br />

the used fuel to the Independent<br />

Spent Fuel Storage Installation in a<br />

safe, accelerated and cost-effective<br />

manner.”<br />

| | The beginning of towing of FPU ‘Academik Lomonosov’ to Pevek.<br />

Orano TN’s NUHOMS® systems<br />

have securely stored used nuclear fuel<br />

in the United States for more than two<br />

decades, with installations at 33 sites<br />

around the country.<br />

| | www.orano.group<br />

Westinghouse accident tolerant<br />

fuel development moves<br />

forward with cooperation<br />

agreement with ENUSA<br />

(westinghouse) Westinghouse Electric<br />

Company announced that it will collaborate<br />

in the development of its En-<br />

Core® Fuel, the revolutionary<br />

accident-tolerant fuel (ATF) design,<br />

with ENUSA Industrias Avanzadas<br />

(ENUSA) through a Frame Cooperation<br />

Agreement (FCA).<br />

“This agreement serves to<br />

strengthen the technical and commercial<br />

relations between ENUSA and<br />

Westinghouse as we work to develop<br />

leading nuclear fuel technology,” said<br />

Torbjörn Norén, European Fuel Group<br />

and EMEA Fuel Delivery Director at<br />

Westinghouse. “Westinghouse’s work<br />

with ENUSA in the Spanish and<br />

European Fuel Group markets will<br />

help to facilitate agreements with<br />

customers to launch EnCore Fuel<br />

demonstration programs in their<br />

plants.”<br />

Under the terms of the agreement,<br />

the newly signed FCA establishes<br />

the framework that will regulate the<br />

different Joint Development Programs<br />

(JDPs) to be launched between<br />

both companies. The first JDP will<br />

evaluate the application of the<br />

segmented rod concept and develop<br />

models of ATF / EnCore fuel behavior.<br />

The first JDP will be followed by<br />

other JDPs in the area of codes and<br />

methods, spent fuel management,<br />

and fuel fabrication and inspection<br />

technology.<br />

| | www.westinghousenuclear.com<br />

Russia’s floating nuclear<br />

plant arrives in Murmansk f<br />

or fuelling<br />

(nucnet) Russia’s first commercial<br />

floating nuclear power station, the<br />

Akademik Lomonosov, has arrived in<br />

the port city of Murmansk in the far<br />

northwest of Russia where it will be<br />

loaded with nuclear fuel, state nuclear<br />

corporation Rosatom said.<br />

The plant was moved from its construction<br />

site in St Petersburg with no<br />

nuclear fuel on board. Fuel will be<br />

loaded in Murmansk and the plant<br />

will then be moved for deployment at<br />

Pevek, an Arctic port town in the<br />

country’s far north-eastern region of<br />

Chukotka, in the summer of 2019.<br />

Commissioning is scheduled for the<br />

autumn of 2019.<br />

The Akademik Lomonosov – set to<br />

be the only operating floating nuclear<br />

plant in the world – will be the first<br />

vessel of a proposed fleet of floating<br />

plants with small pressurised water<br />

reactor units that can provide energy,<br />

heat and desalinated water to remote<br />

and arid areas of the country.<br />

It will be the first floating nuclear<br />

station to be built and deployed<br />

since the MH-1A, also known as<br />

the Sturgis, in the US in 1967. The<br />

Sturgis was towed to the Panama<br />

Canal Zone that it supplied with<br />

10 MW of electricity from October<br />

1968 to 1975.<br />

The 21,000-tonne vessel has two<br />

Russian-designed KLT-40S reactor<br />

units with an electrical power<br />

generating capacity of 35 MW each,<br />

sufficient for a city with a population<br />

of around 200,000 people.<br />

Rosatom said the Akademik<br />

Lomonosov will replace capacity lost<br />

when the Bilibino nuclear station in<br />

Chukotka is shut down. According to<br />

Rosatom, Bilibino generates 80% of<br />

electricity in the isolated region.<br />

News


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

Unit 1 at Bilibino is scheduled to be<br />

permanently shut down in December<br />

<strong>2018</strong>. The remaining three units will<br />

be shut down in December 2021,<br />

Rosatom has said.<br />

| | www.rosatom.ru<br />

GNF Wins $ 250 Million<br />

Contract To Provide BWR Fuel<br />

For Entergy<br />

(nucnet) US-based Global Nuclear<br />

Fuel (GNF) has been awarded a longterm<br />

contract by Entergy Nuclear to<br />

continue to fuel its boiling water<br />

reactors.<br />

The new fuel supply contract,<br />

valued at more than $250m, runs<br />

from 2019 to 2031 and includes 10 reloads<br />

of GNF3 nuclear fuel. Entergy<br />

will be the first customer to take delivery<br />

of GNF3 in reload quantities.<br />

GNF, a General Electric-led joint<br />

venture with Hitachi, said the GNF3<br />

fuel assembly, manufactured in<br />

Wilmington, North Carolina, is<br />

designed to offer improved fuel cycle<br />

economics, increased performance<br />

and flexibility.<br />

GNF3 lead use assemblies have<br />

been operating in several US nuclear<br />

power plants, including four lead use<br />

assemblies in Entergy’s River Bend<br />

nuclear station in Louisiana since<br />

2015.<br />

In 2019, River Bend will become<br />

the first plant in which GNF3 will be<br />

installed in reload quantities. GNF3<br />

will be installed in reload quantities at<br />

Grand Gulf in Mississippi in 2020.<br />

| | nuclear.gepower.com<br />

Forum<br />

10 th Anniversary International<br />

Forum ATOMEXPO <strong>2018</strong><br />

(atomexpo) The ATOMEXPO International<br />

Forum is the largest congress<br />

and exhibition event of the nuclear<br />

industry. Inaugurated in 2009 on<br />

the initiative of Rosatom State Corporation,<br />

the forum is held annually.<br />

Traditionally, the event brings<br />

together leaders of major companies<br />

of the global nuclear industry<br />

and related industries, government<br />

agencies, representatives of international<br />

and public organizations,<br />

and leading experts. Over the years,<br />

ATOMEXPO has become a global<br />

event for the exchange of views and<br />

best practices in the field of effective<br />

nuclear power use, and a popular<br />

venue for business meetings, partnership<br />

agreements and launch of new<br />

projects.<br />

The 10 th International Forum<br />

ATOMEXPO <strong>2018</strong> was held in May in<br />

Sochi. This year the key theme is:<br />

Global Partnership – Joint Success.<br />

The plenary discussion on this theme<br />

will be attended by: Aleksei Likhachev,<br />

Director General of Rosatom State<br />

Atomic Energy Corporation; William<br />

D. Magwood IV, Director General of<br />

the Nuclear Agency of the Organization<br />

for Economic Cooperation<br />

and Development; Liubov Glebova,<br />

member of Russian Federation<br />

Council; Mohamed Shaker, Ministry<br />

of Electricity and Renewable Energy<br />

of Egypt; Mikhail Chudakov, IAEA<br />

Deputy Director general; Hortensia<br />

Jimenez Rivera, General Executive<br />

Director of the Bolivian Atomic<br />

Energy Agency; Necati Yamac,<br />

Deputy Undersecretary of Ministry of<br />

Energy and Natural Resources of<br />

Turkey; Vladimir Semashko, Deputy<br />

Prime Minister of the Republic of<br />

Belarus.<br />

The program includes over 20<br />

round tables and panel sessions,<br />

which will be attended by more than<br />

200 experts. The participants will<br />

address topical issues on multilateral<br />

cooperation in all areas of nuclear<br />

technology application, focusing on<br />

international partnerships in the construction<br />

of nuclear power plants, digital<br />

technologies, research, staff training,<br />

infrastructure development and<br />

security. Signing of important documents<br />

is also planned: agreements on<br />

strategic cooperation and partnership,<br />

commercial contracts, and project<br />

development documents.<br />

The third Russia-IAEA Nuclear<br />

Management School for Managers in<br />

Nuclear Organizations will be held for<br />

the first time at ATOMEXPO. A special<br />

event will premiere the ATOMEXPO<br />

AWARDS, where an international<br />

professional award for outstanding<br />

services will be awarded to global<br />

companies that have made a significant<br />

contribution to the development<br />

of the nuclear industry and the<br />

use of nuclear power for the benefit of<br />

mankind.<br />

It is expected that over 3,000 representatives<br />

of over 600 companies<br />

from over 60 countries will take part<br />

in ATOMEXPO <strong>2018</strong>. The exhibition<br />

will present the latest technologies,<br />

products and solutions developed<br />

by more than 115 Russian and international<br />

nuclear power companies<br />

and related industries.<br />

Between 2009 and 2017, about<br />

38,000 attendees from 83 countries<br />

took part in ATOMEXPO events, 987<br />

companies made presentations, and<br />

1,116 experts spoke at 141 round<br />

tables. More than 300 agreements<br />

and international cooperation documents<br />

were signed during the nine<br />

forums. Platinum sponsors of the<br />

anniversary ATOMEXPO <strong>2018</strong> are<br />

Sovcombank and VTB bank; Gold<br />

sponsor – Gazprombank; partners –<br />

TVEL, RosRAO, National Operator<br />

for Radioactive Waste Management;<br />

energy sponsor – REA; operator –<br />

Atomexpo.<br />

| | www.rosatom.ru<br />

People<br />

Holger Bröskamp retires after<br />

15 years with GNS<br />

(gns) Holger Bröskamp (60) retired at<br />

the end of April <strong>2018</strong> after 15 years in<br />

the management of GNS. Bröskamp<br />

was spokesman of the GNS Board of<br />

Managing Directors from March 2003<br />

to September 2011, since then he has<br />

been its deputy chairman.<br />

“During his one and a half decades<br />

at the head of GNS, Holger Bröskamp<br />

has always given equal priority to safe<br />

disposal and the well-being of our<br />

employees,” says Dr. Hannes Wimmer,<br />

Chairman of the Management Board<br />

of GNS, in praise of his colleague<br />

who is leaving the company. “With<br />

these principles, he has had a<br />

lasting influence on GNS and laid<br />

the foundations for our success<br />

today.”<br />

GNS Supervisory Board Chairman<br />

Dr. Guido Knott adds: “Holger<br />

Bröskamp enjoys an excellent reputation<br />

in all decisive waste disposal<br />

issues in politics, among experts and<br />

among domestic and foreign GNS<br />

customers.In a tense period between<br />

phase-out of nuclear energy, the<br />

extension of its operating life and the<br />

second phase-out decision, he made a<br />

decisive contribution to objectifying<br />

the debates. On behalf of all GNS<br />

shareholders and the Supervisory<br />

Board, I would like to thank Mr.<br />

Bröskamp for his outstanding commitment”.<br />

Of the activities Holger Bröskamp<br />

was most recently responsible for,<br />

Dr. Hannes Wimmer has taken over<br />

waste management and the retrieval<br />

of residues from reprocessing, while<br />

Managing Director Dr. Jens Schröder<br />

is now responsible for spent fuel<br />

management.<br />

The operation of the interim<br />

storage facilities in Ahaus and<br />

Gorleben, which were also under<br />

Bröskamp’s responsibility, was<br />

419<br />

NEWS<br />

News


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

420<br />

NEWS<br />

already taken over by the federal<br />

government last year as part of the<br />

reorganization of nuclear waste<br />

management in Germany.<br />

The Board of Management Directors<br />

of GNS now consists of Dr. Hannes<br />

Wimmer (CEO), Dr. Jens Schröder<br />

(CTO) and Georg Büth (CFO).<br />

| | www.gns.de<br />

Publications<br />

Reaktorsicherheit für<br />

Leistungskernkraftwerke –<br />

Die Entwicklung im<br />

politischen und technischen<br />

Umfeld der Bundesrepublik<br />

Deutschland<br />

Das in der <strong>atw</strong> Juli 2013, S. 461/462<br />

besprochene Werk von Peter Laufs ist<br />

jetzt in der 2. Auflage erschienen. Neu<br />

aufgenommen und detailliert behandelt<br />

wurden die Themen Alterungsmanagement,<br />

der Rückbau von<br />

Kernkraftwerken und die Entsorgung<br />

radioaktiver Abfälle. Neben diesen<br />

umfangreichen Ergänzungen wurde<br />

der Stoff der 1. Auflage überarbeitet,<br />

erweitert und an die neuere Entwicklung<br />

seit Erscheinen der 1. Auflage<br />

angepasst. Wegen des gewachsenen<br />

Umfangs wurde das Werk in zwei Bände<br />

aufgeteilt, die auch einzeln<br />

bezogen werden können. Der 2. Band,<br />

der auch die genannten neuen Kapitel<br />

enthält, war umgehend vergriffen<br />

und musste nachgedruckt werden.<br />

Ursächlich war offenbar das starke<br />

Interesse an der umfassenden Darstellung<br />

der Endlagerpolitik in<br />

Deutschland und vergleichend in<br />

einigen anderen Ländern. In dieser<br />

geschlossenen Form findet man das<br />

sonst nirgendwo.<br />

Das Buch ist in einer auch für den<br />

interessierten Nichtfachmann verständlichen<br />

Sprache geschrieben und<br />

bietet mit seinem umfangreichen<br />

Literaturverzeichnis viele Materialien<br />

für weiterführende Studien.<br />

Laufs, P.: Reaktorsicherheit für<br />

Leistungskernkraftwerke – Die Entwicklung<br />

im politischen und technischen<br />

Umfeld der Bundesrepublik<br />

Deutschland.<br />

• 2. Auflage. Band 1: 866 Seiten,<br />

389 Abb., 29 Tab., Springer, Berlin<br />

<strong>2018</strong>, ISBN 978-3-662-53452-6,<br />

124,99 €, eBook 89,99 €;<br />

Band 2: 624 Seiten, 434 Abb.,<br />

24 Tab., Springer, Berlin <strong>2018</strong><br />

ISBN 978-3-662-54163-0,<br />

124,99 €, eBook 89,99 €<br />

| | www.springer.com<br />

Market data<br />

(All information is supplied without<br />

guarantee.)<br />

Nuclear Fuel Supply<br />

Market Data<br />

Information in current (nominal)<br />

U.S.-$. No inflation adjustment of<br />

prices on a base year. Separative work<br />

data for the formerly “secondary<br />

market”. Uranium prices [US-$/lb<br />

U 3 O 8 ; 1 lb = 453.53 g; 1 lb U 3 O 8 =<br />

0.385 kg U]. Conversion prices [US-$/<br />

kg U], Separative work [US-$/SWU<br />

(Separative work unit)].<br />

January to December 2014<br />

• Uranium: 28.10–42.00<br />

• Conversion: 7.25–11.00<br />

• Separative work: 86.00–98.00<br />

January to December 2015<br />

• Uranium: 35.00–39.75<br />

• Conversion: 6.25–9.50<br />

• Separative work: 58.00–92.00<br />

2016<br />

January to June 2016<br />

• Uranium: 26.50–35.25<br />

• Conversion: 6.25–6.75<br />

• Separative work: 58.00–62.00<br />

July to December 2016<br />

• Uranium: 18.75–27.80<br />

• Conversion: 5.50–6.50<br />

• Separative work: 47.00–62.00<br />

2017<br />

January to June 2017<br />

• Uranium: 19.25–26.50<br />

• Conversion: 5.00–6.75<br />

• Separative work: 42.00–50.00<br />

July to December 2017<br />

• Uranium: 19.50–26.00<br />

• Conversion: 4.50–6.00<br />

• Separative work: 39.00–43.00<br />

<strong>2018</strong><br />

January <strong>2018</strong><br />

• Uranium: 21.75–24.00<br />

• Conversion: 6.00–7.00<br />

• Separative work: 38.00–42.00<br />

February <strong>2018</strong><br />

• Uranium: 21.25–22.50<br />

• Conversion: 6.25–7.25<br />

• Separative work: 37.00–40.00<br />

March <strong>2018</strong><br />

• Uranium: 20.50–22.25<br />

• Conversion: 6.50–7.50<br />

• Separative work: 36.00–39.00<br />

April <strong>2018</strong><br />

• Uranium: 20.00–21.75<br />

• Conversion: 7.50–8.50<br />

• Separative work: 36.00–39.00<br />

May <strong>2018</strong><br />

• Uranium: 21.75–22.80<br />

• Conversion: 8.00–8.75<br />

• Separative work: 36.00–39.00<br />

| | Source: Energy Intelligence<br />

www.energyintel.com<br />

Cross-border Price<br />

for Hard Coal<br />

Cross-border price for hard coal in<br />

[€/t TCE] and orders in [t TCE] for<br />

use in power plants (TCE: tonnes of<br />

coal equivalent, German border):<br />

2012: 93.02; 27,453,635<br />

2013: 79.12, 31,637,166<br />

2014: 72.94, 30,591,663<br />

2015: 67.90; 28,919,230<br />

2016: 67.<strong>07</strong>; 29,787,178<br />

2017<br />

I. quarter: 95.75; 8,385,<strong>07</strong>1<br />

II. quarter: 86.40; 5,094,233<br />

III. quarter: 88.<strong>07</strong>; 5,504,908<br />

IV. quarter: 94.<strong>07</strong>; 6,754,798<br />

2017, year: 91.28, 25,739,010<br />

<strong>2018</strong><br />

I. quarter: 89.88; 5.838.003<br />

| | Source: BAFA, some data provisional<br />

www.bafa.de<br />

EEX Trading Results<br />

April <strong>2018</strong><br />

(eex) In April <strong>2018</strong>, the European<br />

Energy Exchange (EEX) increased<br />

volumes on its power derivatives<br />

markets by 12 % to 246.6 TWh (April<br />

2017: 220.7 TWh). In particular, the<br />

markets for Italy (38.8 TWh, +100 %)<br />

and France (19.8 TWh, +48 %)<br />

contributed to this development. Also<br />

the smaller markets for Spain<br />

(7.2 TWh, +54 %) and the Netherlands<br />

(4.3 TWh, +358 %) recorded<br />

significant growth. In Options on<br />

Phelix-DE Futures, at 36.7 TWh,<br />

EEX achieved the highest volume<br />

since the launch of this product.<br />

The April volume comprised<br />

158.3 TWh traded at EEX via Trade<br />

Registration with subsequent clearing.<br />

Clearing and settlement of all<br />

exchange transactions was executed<br />

by European Commodity Clearing<br />

(ECC).<br />

The Settlement Price for base load<br />

contract (Phelix Futures) with<br />

delivery in 2019 amounted to<br />

39.08 €/MWh. The Settlement<br />

Price for peak load contract (Phelix<br />

Futures) with delivery in 2019<br />

amounted to 44.85 €/MWh.<br />

On the EEX markets for emission allowances,<br />

the total trading volume increased<br />

by 56 % to 232.9 million<br />

tonnes of CO 2 in April (April 2017:<br />

149.6 million tonnes of CO 2 ). In<br />

particular, the development was driven<br />

by a significant increase of volumes on<br />

the EUA derivatives market where EEX<br />

recorded an increase of 32 % to 88.0<br />

million tonnes of CO 2 (April 2017: 66.5<br />

million tonnes of CO 2 ). Primary<br />

News


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

market auctions contributed 79.3 million<br />

tonnes of CO 2 to the total volume.<br />

The EUA price with delivery in<br />

December <strong>2018</strong> amounted to<br />

12.65/14.01 €/ EUA (min./max.).<br />

May <strong>2018</strong><br />

(eex) In May <strong>2018</strong>, the European<br />

Energy Exchange (EEX) increased<br />

volumes on its power derivatives<br />

markets by 23% to 306.9 TWh (May<br />

2017: 248.7 TWh) which is the highest<br />

volume since March 2017. In the<br />

benchmark product for European<br />

power trading, the Phelix-DE Future,<br />

EEX achieved new monthly record of<br />

170.4 TWh. Furthermore, EEX was<br />

able to significantly increase volumes<br />

in its markets for Italy (58.4 TWh,<br />

+60%), Spain (9.7 TWh, +52%) and<br />

the Netherlands (3.2 TWh, +283%).<br />

Volumes on the options markets have<br />

tripled as against the previous year to<br />

31.7 TWh (May 2017: 10.3 TWh).<br />

The May volume comprised<br />

191.7 TWh traded at EEX via Trade<br />

Registration with subsequent clearing.<br />

Clearing and settlement of all<br />

exchange transactions was executed<br />

by European Commodity Clearing<br />

(ECC).<br />

The Settlement Price for base load<br />

contract (Phelix Futures) with<br />

delivery in 2019 amounted to<br />

44.42 €/MWh. The Settlement Price<br />

for peak load contract (Phelix<br />

Futures) with delivery in 2019<br />

amounted to 51.88 €/MWh.<br />

On the EEX markets for emission<br />

allowances, the total trading volume<br />

more than quadrupled to 477.8 million<br />

tonnes of CO 2 in May (May 2017:<br />

105.1 million tonnes of CO 2 ). On the<br />

EUA secondary market (Spot and<br />

Derivatives), EEX achieved a new<br />

record volume of 204.8 million tonnes<br />

of CO 2 . Also trading in EUA options<br />

reached a new peak of 214.0 million<br />

tonnes of CO 2 . Primary market auctions<br />

contributed 59.0 million tonnes<br />

of CO 2 to the total volume.<br />

The EUA price with delivery<br />

in December <strong>2018</strong> amounted to<br />

12.97/16.31 €/ EUA (min./max.).<br />

| | www.eex.com<br />

MWV Crude Oil/Product Prices<br />

March 2017<br />

(mwv) According to information and<br />

calculations by the Association of the<br />

German Petroleum Industry MWV e.V.<br />

in March <strong>2018</strong> the prices for super<br />

fuel, fuel oil and heating oil noted<br />

inconsistent compared with the<br />

pre vious month February <strong>2018</strong>. The<br />

average gas station prices for Euro<br />

| | Uranium spot market prices from 1980 to <strong>2018</strong> and from 2008 to <strong>2018</strong>. The price range is shown.<br />

In years with U.S. trade restrictions the unrestricted uranium spot market price is shown.<br />

| | Separative work and conversion market price ranges from 2008 to <strong>2018</strong>. The price range is shown.<br />

)1<br />

In December 2009 Energy Intelligence changed the method of calculation for spot market prices. The change results in virtual price leaps.<br />

super consisted of 134.15 €Cent<br />

( February <strong>2018</strong>: 137.27 €Cent, approx.<br />

-2.27 % in brackets: each information<br />

for pre vious month or rather previous<br />

month comparison), for diesel fuel of<br />

118.03 €Cent (119.50; -1.23 %) and<br />

for heating oil (HEL) of 59.87 €Cent<br />

(59.15 €Cent, +1.22 %).<br />

The tax share for super with a<br />

consumer price of 134.15 €Cent<br />

(137.27 €Cent) consisted of<br />

65.45 €Cent (48.79 %, 65.45 €Cent)<br />

for the current constant mineral oil<br />

tax share and 21.42 €Cent (current<br />

rate: 19.0 % = const., 21.85 €Cent)<br />

for the value added tax. The product<br />

price (notation Rotterdam) consisted<br />

of 38.46 €Cent (28.67 %, 38.46 €Cent)<br />

and the gross margin consisted of<br />

8.82 €Cent (6.57 %; 11.82 €Cent).<br />

Thus the overall tax share for super<br />

results of 67.79 % (66.68 %).<br />

Worldwide crude oil prices<br />

(monthly average price OPEC/Brent/<br />

WTI, Source: U.S. EIA) were slightly<br />

higher, approx. +0.77 % (-4.26 %) in<br />

March <strong>2018</strong> compared to February<br />

<strong>2018</strong>.<br />

The market showed a stable<br />

development with slightly higher<br />

prices; each in US-$/bbl: OPEC<br />

basket: 63.76 (63.48); UK-Brent:<br />

66.02 (65.32); West Texas Intermediate<br />

(WTI): 62.72 (62.23).<br />

April 2017<br />

In April <strong>2018</strong> the prices for super fuel,<br />

fuel oil and heating oil noted higher<br />

compared with the pre vious month<br />

March <strong>2018</strong>. The average gas station<br />

prices for Euro super consisted<br />

of 138.96 €Cent (March <strong>2018</strong>:<br />

134.15 €Cent, approx. +3.59 % in<br />

brackets: each information for previous<br />

month or rather previous month<br />

comparison), for diesel fuel of<br />

121.09 €Cent (118.03; +2.59 %) and<br />

for heating oil (HEL) of 63.12 €Cent<br />

(59.87 €Cent, +0.27 %).<br />

The tax share for super fuel with<br />

a consumer price of 138.96 €Cent<br />

(134.15 €Cent) consisted of<br />

65.45 €Cent (47.10 %, 65.45 €Cent)<br />

for the current constant mineral oil<br />

tax share and 22.19 €Cent (current<br />

rate: 19.0 % = const., 21.42 €Cent)<br />

for the value added tax. The product<br />

price (notation Rotterdam) consisted<br />

of 41.93 €Cent (30.17 %, 41.93 €Cent)<br />

and the gross margin consisted of<br />

9.39 €Cent (6.76 %; 8.82 €Cent).<br />

Thus the overall tax share for super<br />

results of 66.10 % (67.79 %).<br />

Worldwide crude oil prices<br />

(monthly average price OPEC/Brent/<br />

WTI, Source: U.S. EIA) were markable<br />

higher, approx. +7.39 % (+0.77 %)<br />

in April <strong>2018</strong> compared to March<br />

<strong>2018</strong>.<br />

The market showed a stable<br />

development with higher prices; each<br />

in US-$/bbl: OPEC basket: 68.47<br />

(63.76); UK-Brent: 72.11 (66.02);<br />

West Texas Inter mediate (WTI):<br />

66.25 (62.25).<br />

| | www.mwv.de<br />

421<br />

NEWS<br />

News


<strong>atw</strong> Vol. 63 (<strong>2018</strong>) | Issue 6/7 ı June/July<br />

422<br />

Confidence in Nuclear Safeguards at Risk<br />

as Trump Quits One Deal to Pursue Another<br />

John Shepherd<br />

NUCLEAR TODAY<br />

References:<br />

Statement by<br />

Yukiya Amano,<br />

https://bit.ly/2HlS7O<br />

Islamic Republic<br />

News Agency report,<br />

https://bit.ly/2sLiIjg<br />

By the time you sit down to read this article, Donald Trump and Kim Jong Un may have had an historic sit-down of their<br />

own – in fact the first meeting between a sitting US president and a leader of North Korea.<br />

The schedule for the meeting has been as unpredictable as<br />

the two leaders themselves and, at the time of writing,<br />

their proposed meeting has been variously described as a<br />

“summit” and “meet and greet”. The description appears<br />

designed to keep expectations in check.<br />

What is certain is that the “denuclearisation” of the<br />

Korean peninsula is on the agenda – although both sides<br />

appear to have different ideas as to what that means.<br />

Under normal circumstances, an outbreak of peace,<br />

harmony and moves to develop an atmosphere of mutual<br />

trust between the US and North Korea would be very<br />

welcome. But whatever relationship the leaders may or<br />

may not be seeking to nurture, I fear the circumstances<br />

that have led up to this appointment with destiny puts at<br />

risk the confidence the international community must<br />

have in the regulated use of civil nuclear power worldwide.<br />

I say this because in the run up to the talks, President<br />

Trump pulled the US out of the 2015 Joint Comprehensive<br />

Plan of Action (JCPOA) with Iran.<br />

Through the JCPOA, Iran effectively had decided to<br />

make a ‘fresh start’ with the international community. The<br />

agreement was with the ‘P5+1’ group of world powers<br />

comprising the US, UK, France, China, Russia and Germany.<br />

Iran agreed to limit its sensitive nuclear activities and<br />

allow in International Atomic Energy Agency (IAEA)<br />

inspectors in return for the lifting of economic sanctions.<br />

The JCPOA was designed to end years of tension and<br />

fears about military aspects of Iran's nuclear activities. Just<br />

last March, IAEA director-general Yukiya Amano said “Iran<br />

is implementing its nuclear-related commitments” under<br />

the JCPOA.<br />

In May, Amano stressed that Iran was “subject to the<br />

world’s most robust nuclear verification regime under the<br />

JCPOA, which is a significant verification gain”. As of<br />

5 June, Amano said the IAEA “can confirm that the nuclearrelated<br />

commitments are being implemented by Iran”.<br />

The IAEA has said repeatedly that, before the end of<br />

2003, “an organisational structure was in place in Iran<br />

suitable for the coordination of a range of activities<br />

relevant to the development of a nuclear explosive device”.<br />

However, the Agency “also assessed that these activities<br />

did not advance beyond feasibility and scientific studies,<br />

and the acquisition of certain relevant technical<br />

competences and capabilities”. The IAEA said it had “no<br />

credible indications of activities in Iran relevant to the<br />

development of a nuclear explosive device after 2009”.<br />

But all this was not enough for the US president. He<br />

effectively questioned the credibility of the IAEA.<br />

Instead, the US president decided it was time to embrace<br />

North Korea, which has a record of frustrating, dodging<br />

and rebuffing all safeguards attempts by the world’s nuclear<br />

community, largely under the auspices of the IAEA.<br />

Readers may recall the 1994 framework agreement,<br />

under which North Korea agreed to freeze work at its then<br />

gas-graphite moderated reactors and related facilities and<br />

to allow the IAEA to monitor that freeze. Pyongyang was<br />

also required to “consistently take steps to implement the<br />

North-South Joint Declaration on the Denuclearization of<br />

the Korean Peninsula” and to remain a party to the Non-<br />

Proliferation Treaty (NPT). In exchange, the US agreed to<br />

lead an international consortium to construct two light<br />

water power reactors, and to provide 500,000 tons of<br />

heavy fuel oil per year until the first reactor came online<br />

with a target date of 2003.<br />

But North Korea delayed safeguards inspections<br />

designed to verify its past nuclear activities – which in turn<br />

meant the proposed power reactors did not materialise. The<br />

international community also feared North Korea had an<br />

illicit highly-enriched uranium programme. Subsequent US<br />

intelligence reports appeared to support those concerns and<br />

it was later revealed that North Korea, together with Libya<br />

and Iran, had illegally acquired gas-centrifuge technology<br />

from a Pakistani nuclear scientist.<br />

North Korea’s behaviour since then has not improved<br />

and it remains to be seen whether Chairman Kim sees a<br />

meeting with President Trump as an opportunity to start<br />

making amends.<br />

However, it cannot make sense for the US to have<br />

worked so hard with the IAEA on bringing Iran into line<br />

with strictly-supervised civil nuclear operations – only to<br />

then say “the JCPOA is not good enough”. It adds insult to<br />

injury to then imply the US is ready to do business with the<br />

rogue nuclear nation of North Korea!<br />

What trust can the general public have in the safeguards<br />

and monitoring that the IAEA is tasked to carry out<br />

anywhere in the face of the US administration’s actions?<br />

Worse still, what example does the actions of the US set<br />

for other nations in terms of their relationships and<br />

agreements with the international nuclear community?<br />

President Trump has in the past alluded to his admiration<br />

for one predecessor in particular – President Dwight<br />

Eisenhower. If so, then all may not be lost, because the<br />

genesis of the IAEA was Eisenhower’s ‘Atoms for Peace’<br />

address to the United Nations in 1953.<br />

Whatever the outcome of the talks with Chairman Kim,<br />

I hope someone in the US administration will be bold<br />

enough to get President Trump to reflect on the Atoms for<br />

Peace ideals.<br />

Mr Amano has warned in recent weeks that if the JCPOA<br />

were to fail, “it would be a great loss for nuclear verification<br />

and for multilateralism”.<br />

And for its part, Iran’s ambassador to the European<br />

Union, Peiman Seadat, has been quoted as saying “years of<br />

intense multilateral diplomacy are now on critical life<br />

support and without effective and timely intervention, the<br />

JCPOA will simply die”.<br />

Perhaps we could all remind the US president of the<br />

IAEA’s work for the greater nuclear good via his communications<br />

channel of choice? Feel free to Tweet a courteous<br />

but steadfast defence of the Agency to @realDonaldTrump.<br />

Author<br />

John Shepherd<br />

Shepherd Communications<br />

3 Brooklands<br />

West Sussex<br />

BN43 5FE<br />

Nuclear Today<br />

Confidence in Nuclear Safeguards at Risk as Trump Quits One Deal to Pursue Another ı John Shepherd


Kommunikation und<br />

Training für Kerntechnik<br />

Rückbau kerntechnischer Anlagen<br />

In Kooperation mit<br />

TÜV SÜD Energietechnik GmbH<br />

Baden-Württemberg<br />

Seminar:<br />

Stilllegung und Rückbau in Recht und Praxis<br />

Seminarinhalte<br />

Genehmigungen für die Stilllegung und den Rückbau<br />

ı<br />

ı<br />

Gestaltung der Übergänge zwischen der Betriebs- und der Stilllegungsgenehmigung<br />

Gestaltung der Übergänge zwischen Genehmigungs- und Aufsichtsphase<br />

Rechtliche Gestaltung des Genehmigungsverfahrens<br />

ı<br />

ı<br />

ı<br />

ı<br />

Elemente des Umweltbereiches<br />

UVP und Erörterungstermin<br />

Anfechtung von Genehmigungen<br />

Stellungnahmen der EU-Kommission<br />

Reststoffe und Abfälle<br />

ı<br />

ı<br />

ı<br />

ı<br />

Vorstellung von Reststoffkonzepten<br />

Bewertung der Reststoffkonzepte<br />

Neue Regelungen zum Übergang der Entsorgungsverantwortung<br />

Entsorgungsfragen rund um Abfälle aus dem Rückbau<br />

Zielgruppe<br />

Die 2-tägige Schulung wendet sich an Fach- und Führungskräfte, Mitarbeiterinnen und Mitarbeiter<br />

von Betreibern, Industrie und Dienstleistern, die sich mit der Thematik aktuell bereits beschäftigen<br />

oder sich künftig damit auseinander setzen werden.<br />

Maximale Teilnehmerzahl: 12 Personen<br />

Referenten<br />

Dr. Matthias Bauerfeind<br />

Dr. Christian Raetzke<br />

Wir freuen uns auf Ihre Teilnahme!<br />

ı Abteilung Stilllegung, Entsorgung, Reaktorphysik, TÜV SÜD Energietechnik<br />

GmbH Baden-Württemberg<br />

ı Rechtsanwalt, Leipzig<br />

Bei Fragen zur Anmeldung rufen Sie uns bitte an oder senden uns eine E-Mail.<br />

Zusatztermine<br />

2 Tage<br />

24. bis 25. September <strong>2018</strong><br />

Tag 1: 10:30 bis 17:45 Uhr<br />

Tag 2: 09:00 bis 16:45 Uhr<br />

Veranstaltungsort<br />

Geschäftsstelle der INFORUM<br />

Robert-Koch-Platz 4<br />

10115 Berlin<br />

Teilnahmegebühr<br />

1.598,– € ı zzgl. 19 % USt.<br />

Im Preis inbegriffen sind:<br />

ı Seminarunterlagen<br />

ı Teilnahmebescheinigung<br />

ı Pausenverpflegung<br />

inkl. Mittagessen<br />

Kontakt<br />

INFORUM<br />

Verlags- und Verwaltungsgesellschaft<br />

mbH<br />

Robert-Koch-Platz 4<br />

10115 Berlin<br />

Petra Dinter-Tumtzak<br />

Fon +49 30 498555-30<br />

Fax +49 30 498555-18<br />

seminare@kernenergie.de


Media Partner<br />

www.nucleartech-meeting.com<br />

Save the Date<br />

7 – 8 May 2019<br />

Estrel Convention Center Berlin, Germany<br />

Key Topics<br />

Outstanding Know-How & Sustainable Innovations<br />

Enhanced Safety & Operation Excellence<br />

Decommissioning Experience & Waste Management Solutions<br />

The International Expert Conference on Nuclear Technology

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!