17.01.2013 Views

channel - Advances in Electronics and Telecommunications

channel - Advances in Electronics and Telecommunications

channel - Advances in Electronics and Telecommunications

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

STAMATIOU et al.: SPATIAL MULTIPLEXING IN RANDOM WIRELESS NETWORKS 7<br />

rate as R = log(1 + θ), where θ is an appropriate signalto-<strong>in</strong>terference-ratio<br />

(SIR) threshold, the success probability<br />

correspond<strong>in</strong>g to (1) is given by [7]<br />

� �<br />

Ps = P log 1 + a<br />

� �<br />

> R<br />

� z<br />

a<br />

�<br />

= P > θ , (4)<br />

z<br />

where a = �H�2 is chi-square distributed with 2N degrees of<br />

freedom, i.e., a ∼ χ2 2N . The respective outage probability is<br />

Po = 1 − Ps.<br />

A. Evaluation of Ps<br />

The evaluation of Ps requires the knowledge of the statistics<br />

of the SIR γ = a/z. In the follow<strong>in</strong>g theorem, the complementary<br />

cumulative distribution (ccdf) of γ is derived.<br />

Theorem 1 Let γ = a/z, where a ∼ χ2 2N <strong>and</strong> z is an αstable<br />

r<strong>and</strong>om variable with mgf given by (3). The ccdf of γ,<br />

¯Fγ(x), is given by<br />

¯Fγ(x) = e −cxα<br />

+ e −cxα<br />

where<br />

β n k =<br />

k�<br />

m=1<br />

N−1 �<br />

k=1<br />

(−1) m<br />

�<br />

k<br />

m<br />

(cx α ) k<br />

k!<br />

N−1 �<br />

n=k<br />

|βn k |<br />

, x > 0, (5)<br />

n!<br />

�<br />

(αm)n, k = 1, . . . , n (6)<br />

<strong>and</strong> (αm)n � αm . . . (αm − n + 1) is the fall<strong>in</strong>g sequential<br />

product.<br />

Proof: By the def<strong>in</strong>ition of ¯ Fγ(x), we have that<br />

¯Fγ(x) = P(a > xz) =<br />

� +∞<br />

where ¯ Fa(t) is the ccdf of a, given by<br />

0<br />

¯Fa(xy)fz(y)dy, (7)<br />

¯Fa(t) = e −t<br />

N−1 � tn Γ(N, t)<br />

= , t > 0. (8)<br />

n! (N − 1)!<br />

n=0<br />

Substitut<strong>in</strong>g (8) <strong>in</strong> (7), we obta<strong>in</strong><br />

N−1 �<br />

¯Fγ(x)<br />

x<br />

= Φz(x) +<br />

n<br />

n!<br />

n=1<br />

� +∞<br />

From the Laplace transform property<br />

it follows that<br />

0<br />

y n fz(y)e −xy dy.<br />

fz(y)y n L<br />

←→ (−1) n dn Φz(s)<br />

ds n , (9)<br />

N−1 �<br />

¯Fγ(x) = Φz(x) +<br />

n=1<br />

x n<br />

n! (−1)n dn Φz(x)<br />

dx n . (10)<br />

Us<strong>in</strong>g identity 0.430.1, p.24, [16] for the nth derivative of a<br />

composite function, after some algebra, we obta<strong>in</strong><br />

dnΦz(x) dxn = x−ne −cxα<br />

n� βn k<br />

k! (cxα ) k , (11)<br />

k=1<br />

where βn k is def<strong>in</strong>ed <strong>in</strong> (6). Substitut<strong>in</strong>g (11) <strong>in</strong> (10) <strong>and</strong><br />

regroup<strong>in</strong>g terms results <strong>in</strong><br />

¯Fγ(x) = e −cxα<br />

+ e −cxα<br />

N−1 �<br />

n=1<br />

N−1<br />

1<br />

n!<br />

n�<br />

k=1<br />

= e −cxα<br />

+ e −cxα<br />

� (cxα ) k<br />

k!<br />

k=1<br />

(−1) n β n k<br />

k!<br />

N−1 �<br />

n=k<br />

(cx α ) k<br />

(−1) n β n k<br />

n!<br />

. (12)<br />

In order to arrive at (5), we now need to show that<br />

(−1) nβn k ≥ 0. Once aga<strong>in</strong>, us<strong>in</strong>g the identity for the nth<br />

derivative of a composite function, βn k can be written as the<br />

follow<strong>in</strong>g derivative evaluated at x = 1.<br />

β n k = dn (1 − xα ) k<br />

dxn �<br />

�<br />

�<br />

� . (13)<br />

� x=1<br />

From (13), the follow<strong>in</strong>g iterative relation can be proved for<br />

n ≥ 2<br />

β n k =<br />

n�<br />

�<br />

n<br />

�<br />

β m1<br />

1 βn−m1<br />

k−1 . (14)<br />

m1=1<br />

m1<br />

By successive application of (14), we obta<strong>in</strong><br />

(−1) n β n k<br />

n!<br />

=<br />

n�<br />

n−m1 �<br />

m1=1 m2=1<br />

n−mk−2−···−m1 �<br />

· · ·<br />

mk−1=1<br />

(−1) m1 β m1<br />

1 (−1) m2 β m2<br />

1 . . . (−1) mk β mk<br />

1 , (15)<br />

where mk = n − mk−1 − · · · − m1. However, (−1) nβn 1 ≥ 0,<br />

s<strong>in</strong>ce, by (6), (−1) nβn 1 = (−1)n+1α(α − 1) . . . (α − n + 1)<br />

<strong>and</strong> α = 2/b < 1. Therefore, (−1) nβn k ≥ 0 for k = 1, . . . , n.<br />

By the def<strong>in</strong>ition of Ps <strong>in</strong> (4), we have that Ps = ¯ Fγ(θ) or<br />

Ps = e −cθα<br />

+ e −cθα<br />

N−1 �<br />

k=1<br />

(cθ α ) k<br />

k!<br />

N−1 �<br />

n=k<br />

|βn k |<br />

. (16)<br />

n!<br />

We can see that Ps is a product of the term e−cθα (the success<br />

probability for N = 1) <strong>and</strong> a polynomial <strong>in</strong> cθα of degree<br />

N − 1 <strong>and</strong> non-negative coefficients. Clearly, <strong>in</strong>creas<strong>in</strong>g the<br />

number of antennas N, <strong>in</strong>creases the success probability as<br />

more positive terms are added to the polynomial.<br />

In order to obta<strong>in</strong> more <strong>in</strong>sight <strong>in</strong>to the effect of N > 1<br />

on the success probability, we evaluate the spatial contention<br />

parameter<br />

η = − ∂Ps<br />

�<br />

�<br />

� , (17)<br />

∂λ<br />

� λ=0<br />

def<strong>in</strong>ed <strong>in</strong> [17] for s<strong>in</strong>gle-antenna networks as the slope of the<br />

outage probability as a function of the density λ, at λ = 0.<br />

By its def<strong>in</strong>ition, the larger η is, the sharper the <strong>in</strong>crease of<br />

the outage probability as λ <strong>in</strong>creases. We have the follow<strong>in</strong>g<br />

proposition.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!