25.01.2013 Views

Hydro-Mechanical Properties of an Unsaturated Frictional Material

Hydro-Mechanical Properties of an Unsaturated Frictional Material

Hydro-Mechanical Properties of an Unsaturated Frictional Material

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

7.5. VOLUMETRIC BEHAVIOR 163<br />

For description <strong>of</strong> one dimensional unloading <strong>an</strong>d reloading test results <strong>of</strong> cohesive soils<br />

the stress dependent stiffness is calculated by using the following equation, that also was<br />

proposed by Sch<strong>an</strong>z (1998). This equation is similar to Eq. 2.24:<br />

Eur = E ref<br />

ur<br />

� � ˆm<br />

σ + c · cot φ<br />

σref + c · cot φ<br />

(7.1)<br />

where: Eur is the stress dependent stiffness modulus for un-/reloading path, E ref<br />

ur is the<br />

normalized stiffness modulus, σref is the reference stress, σ the vertical net stress <strong>an</strong>d ˆm<br />

a parameter. In this equation additionally the cohesion c <strong>an</strong>d the influence <strong>of</strong> the friction<br />

<strong>an</strong>gle φ are considered. In the present investigation it is suggested to replace in Eq. 7.1 the<br />

cohesion by the suction value ψ to take into account its influence on the stiffness behavior <strong>of</strong><br />

unsaturated s<strong>an</strong>d. The equation for determination <strong>of</strong> stress dependent stiffness modulus for<br />

initial loading Eoed becomes to:<br />

Eoed = E ref<br />

� � ˆm<br />

σ + ψ · cot φ<br />

oed<br />

σref + ψ · cot φ<br />

(7.2)<br />

where: ψ is the suction in the investigated s<strong>an</strong>d. Experimental results performed under<br />

const<strong>an</strong>t suction <strong>an</strong>d appropriate results using Eq. 7.2 are given in Fig. 7.21 for loose as well<br />

Stiffness modulus (kPa)<br />

Stiffness modulus (kPa)<br />

70000<br />

60000<br />

50000<br />

40000<br />

30000<br />

20000<br />

10000<br />

0<br />

Stiffness modulus (kPa)<br />

70000<br />

60000<br />

50000<br />

40000<br />

30000<br />

20000<br />

10000<br />

Applied suction: ψ=1.5 kPa Loose specimen Initial void ratio = 0.89 Assumption: ϕ=39°<br />

Model results Experimental<br />

0 50 100 150 200 0 50 100 150 200<br />

70000<br />

70000<br />

Vertical net stress (kPa)<br />

Vertical net stress (kPa)<br />

60000<br />

60000<br />

ψ=20.0 kPa suction: Applied kPa<br />

ψ=50.0 suction: Applied<br />

50000<br />

40000<br />

30000<br />

20000<br />

10000<br />

0<br />

Stiffness modulus (kPa)<br />

0<br />

50000<br />

40000<br />

30000<br />

20000<br />

10000<br />

0 50 100 150 200<br />

Vertical net stress (kPa)<br />

0<br />

Applied suction: ψ=3.0 kPa<br />

0 50 100 150 200<br />

Vertical net stress (kPa)<br />

Figure 7.21: Comparison <strong>of</strong> experimental results <strong>an</strong>d predicted results (loose specimen)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!