25.01.2013 Views

Hydro-Mechanical Properties of an Unsaturated Frictional Material

Hydro-Mechanical Properties of an Unsaturated Frictional Material

Hydro-Mechanical Properties of an Unsaturated Frictional Material

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

24 CHAPTER 2. STATE OF THE ART<br />

where: S is the saturation <strong>an</strong>d Sr is the residual saturation. In case <strong>of</strong> silt, the shape<br />

<strong>of</strong> the unsaturated hydraulic conductivity function is explained. It is assumed the initial<br />

condition is a water saturated specimen, where the suction is equal to zero <strong>an</strong>d the volumetric<br />

water content is θs = 48 %. The soil matrix is saturated with water <strong>an</strong>d the saturated<br />

conductivity, that is the maximum conductivity (maximum cross sectional area for water<br />

to flow is available), is equal to ks = 1 · 10 −7 m/s. Consequently the conductivity <strong>of</strong> air<br />

is equal to zero at this state. Until reaching the air-entry value the soil retains nearly all<br />

amount <strong>of</strong> water (see also suction water content relationship) that causes only a slight decrease<br />

in unsaturated hydraulic conductivity. Desaturation commences when passing the air-entry<br />

value, where air starts to enter the soil largest pores. With increasing suction the pore<br />

Volumetric water content (%)<br />

Hydraulic cond. (10 -4 m/s)<br />

Relative conductivity (-)<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0.01<br />

0.001<br />

0.0001<br />

S<strong>an</strong>d<br />

0.0001 0.001 0.01 0.1 1<br />

1<br />

Suction (MPa)<br />

0.1<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

0.0001 0.001 0.01 0.1 1<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

Volumetric water content (%)<br />

Hydraulic cond. (10 -7 m/s)<br />

Relative conductivity (-)<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0.01<br />

0.001<br />

0.0001<br />

θ s= 48<br />

Silt<br />

ψ AEV= 0.003 MPa<br />

θ r= 10<br />

0.0001 0.001 0.01 0.1 1<br />

1<br />

Suction (MPa)<br />

0.1<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

k s= 1·10 -7 m/s<br />

0.0001 0.001 0.01 0.1 1<br />

Suction (MPa)<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

Effective Saturation (-)<br />

Volumetric water content (%)<br />

Hydraulic cond. (10 -10 m/s)<br />

Relative conductivity (-)<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0.01<br />

0.001<br />

0.0001<br />

0.0001<br />

1<br />

0.001 0.01 0.1 1<br />

0.1<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

Clay<br />

0.0001 0.001 0.01 0.1 1<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

Figure 2.14: Exemplary hydraulic functions (soil-water characteristic curve - top, hydraulic<br />

conductivity function - middle, relative hydraulic conductivity function - bottom) for s<strong>an</strong>d,<br />

silt <strong>an</strong>d clay

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!