30.07.2013 Views

Progressively Interactive Evolutionary Multi-Objective Optimization ...

Progressively Interactive Evolutionary Multi-Objective Optimization ...

Progressively Interactive Evolutionary Multi-Objective Optimization ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

F2<br />

0.4<br />

0.2<br />

0<br />

−0.2<br />

Lower level P−O front<br />

y1=0.001<br />

(u1(y1), u2(y1))<br />

−0.4<br />

Upper level<br />

P−O front<br />

−0.6<br />

y1=1<br />

−0.8 Most Preferred<br />

Point<br />

−1<br />

−0.2 0 0.2 0.4 0.6 0.8<br />

F1<br />

1<br />

1.2<br />

Fig. 3. Pareto-optimal front for problem DS2. Final<br />

parent population members have been shown<br />

close to the most preferred point.<br />

F2<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

−0.2<br />

Upper level<br />

PO front<br />

Most Preferred<br />

Point<br />

G=0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

F1<br />

Fig. 4. Pareto-optimal front for problem DS3. Final<br />

parent population members have been shown<br />

close to the most preferred point.<br />

Table 2. Total function evaluations for the upper and lower level (21 runs) for DS2.<br />

Algo. 1, Algo. 2, Best Median Worst<br />

Savings Total LL Total UL Total LL Total UL Total LL Total UL<br />

FE FE FE FE FE FE<br />

HBLEMO 4,796,131 112,563 4,958,593 122,413 5,731,016 144,428<br />

PI-HBLEMO 509,681 14,785 640,857 14,535 811,588 15,967<br />

HBLEMO<br />

P I−HBLEMO 9.41 7.61 7.74 8.42 7.06 9.05<br />

to be discrete, thereby causing only a few y1 values to represent the upper level Pareto-optimal<br />

front. The overall problem is given below:<br />

⎛Minimize<br />

F(x, y) =<br />

⎝ y1 + K j=3 (yj − j/2) 2 + τ K i=3 (xi − yi) 2 − R(y1) cos(4 tan−1 y2−x2<br />

y1−x1<br />

y2 + K j=3 (yj − j/2) 2 + τ K i=3 (xi − yi) 2 − R(y1) sin(4 tan−1 <br />

y2−x2<br />

y1−x1<br />

⎞<br />

⎠ ,<br />

subject<br />

<br />

to (x)<br />

<br />

∈ argmin (x)<br />

x1 +<br />

f(x) =<br />

K i=3 (xi − yi) 2<br />

x2 + K i=3 (xi − yi) 2<br />

<br />

g1(x) = (x1 − y1) 2 + (x2 − y2) 2 ≤ r2 <br />

,<br />

G(y) = y2 − (1 − y2 1 ) ≥ 0,<br />

−K ≤ xi ≤ K, for i = 1, . . . , K, 0 ≤ yj ≤ K, for j = 1, . . . , K,<br />

y1 is a multiple of 0.1.<br />

Here a periodically changing radius has been used: R(y1) = 0.1 + 0.15| sin(2π(y1 − 0.1)| and<br />

use r = 0.2. For the upper level Pareto-optimal points, yi = j/2 for j ≤ 3. The variables y1 and<br />

y2 take values satisfying constraint G(y) = 0. For each such combination, variables x1 and x2<br />

lie on the third quadrant of a circle of radius r and center at (y1, y2) in the F-space. For this test<br />

problem, the Pareto-optimal fronts for both lower and upper level lie on constraint boundaries,<br />

thereby requiring good constraint handling strategies to solve the problem adequately. τ = 1<br />

has been used for this test problem with 20 number of variables.<br />

124<br />

(7)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!