30.07.2013 Views

Progressively Interactive Evolutionary Multi-Objective Optimization ...

Progressively Interactive Evolutionary Multi-Objective Optimization ...

Progressively Interactive Evolutionary Multi-Objective Optimization ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

F2<br />

0.4<br />

0.2<br />

0<br />

−0.2<br />

−0.4<br />

−0.6<br />

−0.8<br />

y=1<br />

Upper level<br />

PO front<br />

0.9<br />

B<br />

0.8 0.7071 0.6<br />

A<br />

Lower level<br />

PO fronts<br />

0.5<br />

−1<br />

−2<br />

−1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6<br />

F1<br />

Figure 1: Pareto-optimal fronts of upper<br />

level (complete problem) and some<br />

representative lower level optimization<br />

tasks areshown for problemTP1.<br />

C<br />

F2<br />

2<br />

1.5<br />

1<br />

0.5<br />

Upper Level<br />

front<br />

0<br />

0<br />

x1=1<br />

x1=y<br />

C<br />

0.5<br />

A<br />

y=0.25<br />

y=0.5<br />

1<br />

F1<br />

y=0.75<br />

Lower level<br />

fronts<br />

x1=0<br />

y=1<br />

1.5<br />

B<br />

y=1.5<br />

x1=1<br />

Figure 2: Pareto-optimal front of the upper<br />

level problem for problem TP2 with<br />

xi = 0 for i = 2, . . . , K.<br />

Forafixedvalueof y,thePareto-optimalsolutionsofthelowerleveloptimizationproblem<br />

are given as follows: {xl ∈ R K x1 ∈ [0, y], xi = 0, for i = 2, . . . , K}. However, for<br />

the upper level problem, Pareto-optimalsolutions correspond tofollowing conditions:<br />

{x ∈ R K+1 x1 = y, xi = 0, for i = 2, . . . , K, y ∈ [0.5, 1.0]}. If an algorithm fails to<br />

find the true Pareto-optimal solutions of the lower level problem and ends up finding<br />

a solution below the ‘x1 = y’ curve in Figure 2 (such as solution C), it can potentially<br />

dominateatruePareto-optimalpoint(suchaspointA)therebymakingthetaskoffinding<br />

true Pareto-optimal solutions a difficult task. We use K = 14 here, so that the total<br />

number of variablesis 15inthis problem.<br />

4.3 TestProblemTP3<br />

This problemis takenfrom(Eichfelder,2007):<br />

2<br />

x1 + x2 + y + sin<br />

Minimize F(x) =<br />

2 (x1 + y)<br />

cos(x2)(0.1 + y)(exp(− x1<br />

0.1+x2 )<br />

subjectto<br />

⎧<br />

<br />

(x1−2)<br />

argmin f(x) =<br />

(x1,x2)<br />

⎪⎨<br />

(x1, x2) ∈<br />

⎪⎩<br />

2 +(x2−1) 2<br />

+ 4<br />

x2y+(5−y1) 2<br />

g1(x) = x2 − x 2 1 ≥ 0<br />

g2(x) = 10 − 5x 2 1 − x2 ≥ 0<br />

g3(x) = 5 − y<br />

− x2 ≥ 0<br />

6<br />

g4(x) = x1 ≥ 0<br />

G1(x) ≡ 16 − (x1 − 0.5) 2 − (x2 − 5) 2 − (y − 5) 2 ≥ 0,<br />

0 ≤ x1, x2, y ≤ 10.<br />

<br />

,<br />

16<br />

x 2 1 +(x2−6) 4 −2x1y1−(5−y1) 2<br />

80<br />

+ sin( x2<br />

10 )<br />

For this problem, the exact Pareto-optimal front of the lower or the upper level optimization<br />

problem are not derived mathematically. For this reason, we do not consider<br />

thisproblemanyfurtherhere. SomeresultsusingourearlierBLEMOprocedurecanbe<br />

found elsewhere(Deband Sinha,2009b).<br />

81<br />

<br />

⎫<br />

⎪⎬<br />

,<br />

⎪⎭<br />

2<br />

(5)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!