30.07.2013 Views

Progressively Interactive Evolutionary Multi-Objective Optimization ...

Progressively Interactive Evolutionary Multi-Objective Optimization ...

Progressively Interactive Evolutionary Multi-Objective Optimization ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

4.6 ProblemDS2<br />

Thenextproblemuses ΦU parametricfunctionwhichcausesafewdiscretevaluesof y1<br />

todeterminethe upperlevelPareto-optimalfront. The ΦU mappingfunctionis chosen<br />

asfollows and is shown inFigure5.<br />

⎧<br />

⎨<br />

v1(y1) =<br />

⎩<br />

⎧<br />

⎨<br />

v2(y1) =<br />

⎩<br />

cos(0.2π)y1 + sin(0.2π) |0.02 sin(5πy1)|,<br />

for 0 ≤ y1 ≤ 1,<br />

y1 − (1 − cos(0.2π)), y1 > 1<br />

− sin(0.2π)y1 + cos(0.2π) |0.02 sin(5πy1)|,<br />

for 0 ≤ y1 ≤ 1,<br />

0.1(y1 − 1) − sin(0.2π), for y1 > 1.<br />

The U1-U2 parametric function is identical to that used in DS1, but here we use γ = 4.<br />

This will causethe U1-U2 envelopetobeacompletecircle,asshown bydashedlines in<br />

the figure. The f ∗ 1-f ∗ 2 mapping is chosen identical to that in DS1. Again, the term ej is<br />

notconsideredhereandamultimodal Ej termisused. Differentlinkedterms lj and Lj<br />

comparedto those used inDS1areused here. The overallproblemis givenas follows:<br />

Minimize F(x, y) =<br />

⎛<br />

⎜<br />

⎝<br />

v1(y1) + K 2<br />

j=2 yj + 10(1 − cos( π<br />

+τ K i=2 (xi − yi)2 <br />

− r cos γ π x1<br />

2 y1<br />

v2(y1) + K 2<br />

j=2 yj + 10(1 − cos( π<br />

+τ K<br />

i=2 (xi − yi)2 − r sin<br />

<br />

γ π<br />

2<br />

K yi))<br />

<br />

K yi))<br />

⎞<br />

⎟<br />

⎠ ,<br />

subject to (x)<br />

<br />

∈ f(x) =<br />

2<br />

x1 +<br />

argmin (x)<br />

K i=2 (xi − yi)2<br />

K i=1 i(xi − yi)2<br />

x1<br />

y1<br />

−K ≤ xi ≤ K, i = 1, . . . , K,<br />

0.001 ≤ y1 ≤ K, −K ≤ yj ≤ K, j = 2, . . . , K,<br />

(8)<br />

<br />

,<br />

(9)<br />

Due tothe use of periodic terms in v1 and v2 functions, the upper level Pareto-optimal<br />

frontcorrespondstoonlysixdiscretevaluesof y1(=0.001,0.2,0.4,0.6,0.8and1),despite<br />

y1takinganyrealvaluewithin [0.001, K]. Wesuggestusing r = 0.25here. Thisproblem<br />

F2<br />

0.4<br />

0.2<br />

0<br />

−0.2<br />

−0.4<br />

−0.6<br />

−0.8<br />

−1<br />

Upper level<br />

P−O front<br />

−0.2<br />

Lower level P−O front<br />

y1=0.001<br />

0<br />

(v1(y1), v2(y1))<br />

0.2 0.4 0.6 0.8<br />

F1<br />

y1=1<br />

1<br />

1.2<br />

Figure 5: Pareto-optimal front for problem<br />

DS2.<br />

has following specific properties:<br />

87<br />

F2<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

−0.2<br />

Upper level<br />

PO front<br />

G=0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

F1<br />

Figure 6: Pareto-optimal front for problemDS3.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!