16.08.2013 Views

Download (5Mb) - Covenant University Repository

Download (5Mb) - Covenant University Repository

Download (5Mb) - Covenant University Repository

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1<br />

2<br />

1<br />

∆ = + − +<br />

2 4<br />

From α<br />

2<br />

α<br />

2<br />

α α<br />

∆ ∑( hij) = ∑( hijk ) + ∑ hij ∆h<br />

we obtain,<br />

ij<br />

αij αijk αij<br />

α<br />

2<br />

∑( hij ) α<br />

2<br />

∑( hijk )<br />

c<br />

( n<br />

α<br />

2<br />

1)<br />

∑( hij) α α β β<br />

∑ hijhklhlk hij<br />

αijαijk αij αβijkl<br />

α β β α α β β α<br />

∑ ( hh li lj hh li lj )( hh ki kj hh ki kj )<br />

+ − −<br />

αβijkl<br />

PROOF OF THE THEOREM<br />

(2.10)<br />

Let M be an n-dimensional compact totally real maximal<br />

spacelike submanifold isometrically immersed in<br />

n+ p<br />

M () c . For each α let Hα denote the symmetric<br />

p<br />

matrix ( hij ) α and let<br />

S h h<br />

α β<br />

αβ ij ij<br />

ij<br />

= ∑<br />

. Then the<br />

(n+2p)×(n+2p)-matrix ( Sαβ ) is symmetric and can be<br />

assumed to be diagonal for a suitable choice of<br />

e ,..., e .<br />

S = S<br />

2<br />

= trH and<br />

n+ 1 n+ p Setting<br />

α αα α<br />

S = ∑ Sα, equation (2.10) can be rewritten as<br />

α<br />

1<br />

α<br />

2 c<br />

2<br />

2<br />

∆ S = ∑( hijk ) + ( n− 1)<br />

S+ ∑Sα + ∑tr(<br />

HαHβ −HβHα)<br />

2 αijk 4<br />

α αβ<br />

(3.1)<br />

α<br />

2 c<br />

2 1 2<br />

= ∑( hijk ) + ( n− 1)<br />

S+ ∑Sα+<br />

S<br />

4 n+ 2p<br />

αijk α<br />

1<br />

+ − + −<br />

n+ 2 p∑<br />

∑<br />

( Sα Sβ) tr( HαHβ HβHα) α> β αβ<br />

2 2<br />

⎛c1 ⎞ 1<br />

= + − + + −<br />

αijk ⎝4 n+ 2p ⎠ n+ 2p<br />

α> β<br />

α<br />

∑( hijk ) ⎜ ( n 1)<br />

S⎟S ∑(<br />

Sα Sβ<br />

)<br />

∑<br />

2 2<br />

( ) 2<br />

α β β α<br />

+ tr H H −HH<br />

αβ<br />

From (3.1) we see that<br />

1 α<br />

2 ⎛c1 ⎞<br />

∫ ∆Sdv ≥ ( hijk ) dv ( n 1)<br />

S Sdv<br />

M 2 ∫ ∑ +<br />

M ∫ M⎜<br />

− + ⎟<br />

αijk<br />

⎝4 n+ 2p<br />

⎠<br />

where dv is the volume element of M.<br />

By the well known theorem of Hopf (1950), ∆ S = 0 .<br />

Therefore,<br />

α<br />

2 ⎛c1⎞ 0≥ ∫ ∑(<br />

hijk ) dv+ ( n 1)<br />

S Sdv<br />

M ∫M⎜<br />

− + ⎟<br />

αijk<br />

⎝4 n+ 2p<br />

⎠<br />

which implies that<br />

Wali 1219<br />

⎛c1⎞ ( n 1) S Sdv 0<br />

M ⎜ − + ⎟ ≤<br />

(3.2)<br />

∫<br />

⎝4 n+ 2p<br />

⎠<br />

Thus either S=0 implying M is totally geodesic or<br />

( 1− n)( n+ 2p)<br />

S ≤ c.<br />

This shows that M is totally<br />

4<br />

geodesic for c≥ 0, n><br />

1 or ( 1− n)( n+ 2p)<br />

0 ≤ S ≤<br />

c<br />

4<br />

for c< 0, n><br />

1.<br />

This proves our theorem.<br />

CONCLUSION<br />

In this paper we studied the geometry of an n-dimensional<br />

compact totally real maximal spacelike submanifold M<br />

n+ p<br />

immersed in an indefinite complex space form M p () c<br />

by computing the square of the length of the second<br />

fundamental form. In conclusion, we have shown that<br />

either the square of the length of second fundamental<br />

form S=0, implying M is totally geodesic for<br />

c≥ 0, n><br />

1 or<br />

(1 − n)( n+ 2 p)<br />

S ≤ c for c< 0, n><br />

1.<br />

4<br />

This generalizes the result by Sun (1994).<br />

REFERENCES<br />

Chen, BY. and Ogiue, K. 1974. On totally real<br />

submanifolds. Transactions of the American<br />

Mathematical Society. 193:257-266.<br />

Hopf, E. 1950. A theorem on the accessibility of<br />

boundary parts of an open point set. Proceedings of the<br />

American Mathematical Society. 1:76-79.<br />

Ishihara, T. 1988. Maximal spacelike submanifolds of a<br />

Pseudoriemannian space of constant curvature. Michigan<br />

Mathematical Journal. 35:345-352.<br />

Sun, H. 1994. Totally real maximal spacelike<br />

submanifolds in indefinite complex space form. Journal of<br />

Northeastern <strong>University</strong>. 15:547-550.<br />

Wali, AN. 2005. On bounds of holomorphic sectional<br />

curvature. East African Journal of Physical Sciences.<br />

6(1):49-53.<br />

Yano, K. and Kon, M. 1976. Totally real submanifolds of<br />

complex space forms II. Kodai Mathematical Seminar<br />

Reports. 27:385-399.<br />

Received: Nov 13, 2010; Revised: Feb 15, 2010; May 14, 2010

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!