27.07.2014 Views

Student Seminar: Classical and Quantum Integrable Systems

Student Seminar: Classical and Quantum Integrable Systems

Student Seminar: Classical and Quantum Integrable Systems

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Upper−half plane<br />

01 01 0 0 1 1 01<br />

−1/k<br />

−1<br />

1<br />

1/k<br />

sn x<br />

K−i K’<br />

K+i K’<br />

+<br />

−K<br />

K<br />

The rectangle region is mapped by the Jacobi function sn x one-to-one onto the<br />

upper-half-plane with four punctures.<br />

The mapping of the upper half-plane onto the rectangle is such that the points<br />

0, 1, 1/k, ∞, −1/k, −1 have the images 0, K, K + iK ′ , iK ′ , K − iK ′ , −K respectively.<br />

The function sn x repeats in congruent blocks of four rectangles <strong>and</strong>, therefore, is<br />

invariant under translations by ω 1 = 4K(k) <strong>and</strong> ω 3 = 2iK ′ (k). Here K <strong>and</strong> K ′ are<br />

complete elliptic integrals (K ′ is called complementary)<br />

K =<br />

K ′ =<br />

∫ 1<br />

0<br />

∫ 1/k<br />

1<br />

dy<br />

√<br />

(1 − y2 )(1 − k 2 y 2 )<br />

∫<br />

dy<br />

1<br />

√<br />

(1 − y2 )(1 − k 2 y 2 ) =<br />

where k = √ 1 − k 2 is the complementary modulus.<br />

Writing<br />

x =<br />

∫ sn x<br />

<strong>and</strong> differentiating over x we will get<br />

0<br />

1 =<br />

dy<br />

√<br />

(1 − y2 )(1 − k 2 y 2 )<br />

sn ′ x<br />

√<br />

(1 − y2 )(1 − k 2 y 2 )<br />

0<br />

dy<br />

√<br />

(1 − y2 )(1 − k ′2 y 2 ) ,<br />

or<br />

(sn ′ x) 2 = (1 − y 2 )(1 − k 2 y 2 ) .<br />

This is differential equation satisfied by the Jacobi elliptic function sn x.<br />

– 28 –

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!