27.07.2014 Views

Student Seminar: Classical and Quantum Integrable Systems

Student Seminar: Classical and Quantum Integrable Systems

Student Seminar: Classical and Quantum Integrable Systems

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

To write down the fundamental commutation relations we have used the shorth<strong>and</strong><br />

notations A λ ≡ A(λ) <strong>and</strong> α = λ − µ. The relevant commutation relations are<br />

[B(λ), B(µ)] = 0 ,<br />

A(λ)B(µ) = λ − µ − i<br />

λ − µ B(µ)A(λ) + i B(λ)A(µ) , (5.5)<br />

λ − µ<br />

D(λ)B(µ) = λ − µ + i<br />

λ − µ B(µ)D(λ) − i<br />

λ − µ B(λ)D(µ) .<br />

The main idea of the algebraic Bethe ansatz is that there exists a pseudo-vacuum<br />

|0〉 such that C(λ)|0〉 = 0 <strong>and</strong> the eigenvectors of τ(λ) with M spins down have the<br />

form<br />

|λ 1 , λ 2 , · · · , λ M 〉 = B(λ 1 )B(λ 2 ) · · · B(λ M )|0〉 ,<br />

where {λ i } are “Bethe roots” which we will compare later on with the pseudomomenta<br />

p i of the magnons in the coordinate Bethe ansatz approach. One can see<br />

that the pseudo-vacuum can be identified with the state<br />

Indeed, since we have<br />

we find that<br />

L n (λ)| ↑ n 〉 =<br />

T (λ)|0〉 =<br />

|0〉 = ⊗ L n=1| ↑ n 〉 .<br />

( (λ +<br />

i<br />

)| ↑ )<br />

2 n〉 i| ↓ n 〉<br />

0 (λ − i )| ↑ 2 n〉<br />

( )<br />

(λ +<br />

i<br />

2 )L |0〉 ∗<br />

0 (λ − i ,<br />

2 )L |0〉<br />

where ∗ st<strong>and</strong>s for irrelevant terms. Thus, we indeed have<br />

(<br />

C(λ)|0〉 = 0 , A(λ)|0〉 = λ + i ) L|0〉 (<br />

, D(λ)|0〉 = λ − i L|0〉<br />

.<br />

2<br />

2)<br />

Comparing with the coordinate Bethe ansatz we see that |0〉 ≡ |F 〉. We also see that<br />

|0〉 is an eigenstate of the transfer matrix. The algebraic Bethe ansatz states that<br />

the other eigenstates are of the form<br />

|λ 1 , λ 2 , · · · , λ M 〉 = B(λ 1 )B(λ 2 ) · · · B(λ M )|0〉<br />

provided the Bethe roots {λ i } satisfy certain restrictions.<br />

restrictions.<br />

We compute<br />

A(λ)B(λ 1 )B(λ 2 ) · · · B(λ M )|0〉 =<br />

Let us now find these<br />

(<br />

λ + i ) L ( ∏ M<br />

λ − λ n − i<br />

)<br />

B(λ 1 )B(λ 2 ) · · · B(λ M )|0〉<br />

2 λ − λ<br />

n=1<br />

n<br />

M∑<br />

M∏<br />

+ Wn A (λ, {λ i })B(λ) B(λ j )|0〉 .<br />

n=1<br />

j=1<br />

j≠n<br />

– 74 –

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!