27.07.2014 Views

Student Seminar: Classical and Quantum Integrable Systems

Student Seminar: Classical and Quantum Integrable Systems

Student Seminar: Classical and Quantum Integrable Systems

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>and</strong> if k < j the contribution will be<br />

Thus, adding up we obtain<br />

O j =<br />

−<br />

=<br />

−<br />

k j +1<br />

W A j (λ k , {λ} M k+1) + W D j (λ k , {λ} M k+1) .<br />

M∏ λ j − λ k − i<br />

(λ j + i ) j−1 L ∑<br />

+ Wj A (λ k , {λ} M<br />

λ j − λ k 2<br />

k+1)<br />

k j +1<br />

k=j+1<br />

k=1<br />

M∏ λ j − λ k + i<br />

(λ j − i ) j−1 L ∑<br />

+ Wj D (λ k , {λ} M<br />

λ j − λ k 2<br />

k+1) =<br />

k=1<br />

(<br />

M∏ λ j − λ k − i<br />

(λ j + i ) j−1<br />

j−1<br />

L ∑ i ∏<br />

1 +<br />

λ j − λ k 2<br />

λ k − λ j<br />

k=1<br />

p=k+1<br />

(<br />

M∏ λ j − λ k + i<br />

(λ j − i ) j−1<br />

j−1<br />

L ∑ i ∏<br />

1 −<br />

λ j − λ k 2<br />

λ k − λ j<br />

k=1<br />

k=j+1<br />

Let us now note the useful identity<br />

p=k+1<br />

)<br />

λ j − λ p − i<br />

λ j − λ p<br />

)<br />

λ j − λ p + i<br />

.<br />

λ j − λ p<br />

t n ≡ 1 +<br />

j−1<br />

∑<br />

k=n<br />

i<br />

λ k − λ j<br />

j−1<br />

∏<br />

p=k+1<br />

j−1<br />

λ j − λ p − i ∏ λ j − λ k − i<br />

=<br />

.<br />

λ j − λ p λ j − λ k<br />

k=n<br />

We will prove this by induction over n. For n = j − 1 <strong>and</strong> n = j − 2 we have<br />

i<br />

t j−1 = 1 + = λ j − λ j−1 − i<br />

,<br />

λ j−1 − λ j λ j − λ j−1<br />

i<br />

i λ j − λ j−1 − i<br />

t j−2 = 1 + +<br />

λ j−1 − λ j λ j−2 − λ j λ j − λ j−1<br />

Now we suppose that the formula holds for n = l, then we have<br />

t l−1 = t l +<br />

j−1<br />

i ∏<br />

λ l−1 − λ j<br />

p=l<br />

λ j − λ p − i<br />

λ j − λ p<br />

=<br />

= λ j − λ j−1 − i λ j − λ j−2 − i<br />

.<br />

λ j − λ j−1 λ j − λ j−2<br />

j−1<br />

∏<br />

p=l−1<br />

λ j − λ p − i<br />

λ j − λ p<br />

,<br />

which proves our assumption. With this formula at h<strong>and</strong> we therefore find<br />

1 +<br />

j−1<br />

∑<br />

i=1<br />

i<br />

λ i − λ j<br />

j−1<br />

∏<br />

p=i+1<br />

j−1<br />

λ j − λ p − i ∏ λ j − λ k − i<br />

=<br />

.<br />

λ j − λ p λ j − λ k<br />

k=1<br />

In the same way one can show that<br />

1 −<br />

j−1<br />

∑<br />

i=1<br />

i<br />

λ i − λ j<br />

j−1<br />

∏<br />

p=i+1<br />

j−1<br />

λ j − λ p + i ∏ λ j − λ k + i<br />

=<br />

.<br />

λ j − λ p λ j − λ k<br />

k=1<br />

– 78 –

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!