27.07.2014 Views

Student Seminar: Classical and Quantum Integrable Systems

Student Seminar: Classical and Quantum Integrable Systems

Student Seminar: Classical and Quantum Integrable Systems

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

This allows to establish that<br />

dτ(λ)<br />

dλ τ(λ)−1 | λ=i/2 =<br />

= i −1 ( ∑<br />

n<br />

P 12 P 23 · · · P n−1,n+1 · · · P L−1,L<br />

)(<br />

P L,L−1 P L−1,L−2 · · · P 2,1<br />

)<br />

= 1 i<br />

L∑<br />

n,n+1<br />

P n,n+1 .<br />

On the other h<strong>and</strong> we see that<br />

H = −J<br />

L∑<br />

SnS α n+1 α = − J 4<br />

n=1<br />

L∑<br />

n=1<br />

( 1<br />

σnσ α n+1 α = −J<br />

2<br />

L∑<br />

P n,n+1 − L 4<br />

n=1<br />

)<br />

.<br />

Hence,<br />

( i dτ(λ)<br />

H = −J<br />

2<br />

)<br />

| λ=i/2 ,<br />

dλ τ(λ)−1 − L 4<br />

i.e. the Hamiltonian belongs to the family of L − 1 commuting integrals. To obtain<br />

L commuting integrals we can add the operator S 3 to this family.<br />

The spectrum of the Heisenberg model. Here we compute the eigenvalues of H by<br />

using the algebraic Bethe ansatz. First we derive the commutation relations between<br />

the operators A, B, C, D. The form of the R-matrix is<br />

⎛<br />

⎞<br />

λ − µ + i 0 0 0<br />

0 λ − µ i 0<br />

R(λ − µ) = ⎜<br />

⎟<br />

⎝ 0 i λ − µ 0 ⎠ .<br />

0 0 0 λ − µ + i<br />

We compute<br />

⎛<br />

⎞<br />

⎛<br />

⎞<br />

A(λ) 0 B(λ) 0<br />

A(µ) B(µ) 0 0<br />

0 A(λ) 0 B(λ)<br />

T a (λ) = ⎜<br />

⎟<br />

⎝ C(λ) 0 D(λ) 0 ⎠ , T C(µ) D(µ) 0 0<br />

b(λ) = ⎜<br />

⎟<br />

⎝ 0 0 A(µ) B(µ) ⎠ .<br />

0 C(λ) 0 D(λ)<br />

0 0 C(µ) D(µ)<br />

Plugging this into the fundamental commutation relation we get<br />

⎛<br />

⎞<br />

(α + i)A λ A µ (α + i)A λ B µ (α + i)B λ A µ (α + i)B λ B µ<br />

αA λ C µ + iC λ A µ αA λ D µ + iC λ B µ αB λ C µ + iD λ A µ αB λ D µ + iD λ B µ<br />

⎜<br />

⎟<br />

⎝ iA λ C µ + αC λ A µ iA λ D µ + αC λ B µ iB λ C µ + αD λ A µ iB λ D µ + αD λ B µ ⎠ =<br />

(α + i)C λ C µ (α + i)C λ D µ (α + i)D λ C µ (α + i)D λ D µ<br />

⎛<br />

⎞<br />

(α + i)A µ A λ αB µ A λ + iA µ B λ iB µ A λ + αA µ B λ (α + i)B µ B λ<br />

(α + i)C<br />

=<br />

µ A λ αD µ A λ + iC µ B λ iD µ A λ + αC µ B λ (α + i)D µ B λ<br />

⎜<br />

⎟<br />

⎝ (α + i)A µ C λ αB µ C λ + iA µ D λ iB µ C λ + αA µ D λ (α + i)B µ D λ ⎠ .<br />

(α + i)C µ C λ αD µ C λ + iC µ D λ iD µ C λ + αC µ D λ (α + i)D µ D λ<br />

– 73 –

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!