27.07.2014 Views

Student Seminar: Classical and Quantum Integrable Systems

Student Seminar: Classical and Quantum Integrable Systems

Student Seminar: Classical and Quantum Integrable Systems

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Here in the first bracket we consider the terms with n 2 > n 1 +1, while the last bracket<br />

represents the result of action of H on terms with n 2 = n 1 + 1. Using periodicity<br />

conditions we are allowed to make shifts of the summation variables n 1 , n 2 in the<br />

first bracket to bring all the states to the uniform expression |n 1 , n 2 〉. We therefore<br />

get<br />

{<br />

H|ψ〉 = − J ∑<br />

a(n 1 − 1, n 2 )|n 1 , n 2 〉 +<br />

∑<br />

a(n 1 , n 2 − 1)|n 1 , n 2 〉<br />

2<br />

n 2 >n 1<br />

+ ∑<br />

n 2 >n 1 +2<br />

⎧<br />

⎨<br />

− J 2 ⎩<br />

∑<br />

1≤n 1≤L<br />

n 2>n 1+2<br />

a(n 1 + 1, n 2 )|n 1 , n 2 〉 + ∑<br />

a(n 1 , n 2 + 1)|n 1 , n 2 〉 + L − 8<br />

2<br />

n 2>n 1<br />

[<br />

a(n 1 , n 1 + 1)<br />

|n 1 , n 1 + 2〉 + |n 1 − 1, n 1 + 1〉 + L − 4<br />

2<br />

∑<br />

n 2 >n 1 +1<br />

] ⎫ ⎬<br />

|n 1 , n 1 + 1〉<br />

⎭ .<br />

a(n 1 , n 2 )|n 1 , n 2 〉<br />

Now we complete the sums in the first bracket to run the range n 2 > n 1 . This is<br />

achieved by adding <strong>and</strong> subtracting the missing terms. As the result we will get<br />

H|ψ〉 =<br />

{ ∑<br />

− J 2<br />

−<br />

− J 2 ⎩<br />

n 2>n 1<br />

(<br />

∑<br />

1≤n 1 ≤L<br />

⎧<br />

⎨<br />

a(n 1 − 1, n 2 ) + a(n 1 , n 2 − 1) + a(n 1 + 1, n 2 ) + a(n 1 , n 2 + 1) + L − 8 )<br />

a(n 1 , n 2 ) |n 1 , n 2 〉<br />

2<br />

(<br />

a(n 1 , n 1 )|n 1 , n 1 + 1〉 + a(n 1 + 1, n 1 + 1)|n 1 , n 1 + 1〉 +<br />

+ a(n 1 , n 1 + 1)|n 1 , n 1 + 2〉<br />

} {{ } + a(n 1, n 1 + 2)|n 1 , n 1 + 2〉<br />

} {{ } +L − 8<br />

) }<br />

a(n 1 , n 1 + 1)|n 1 , n 1 + 1〉<br />

2<br />

∑<br />

1≤n 1≤L<br />

[<br />

a(n 1 , n 1 + 1) |n 1 , n 1 + 2〉 + |n 1 − 1, n 1 + 1〉<br />

} {{ } +L − 4<br />

] ⎫ ⎬<br />

|n 1 , n 1 + 1〉<br />

2<br />

⎭ .<br />

The underbraced terms cancel out <strong>and</strong> we finally get<br />

H|ψ〉 =<br />

{ ∑<br />

− J 2<br />

⎧<br />

⎨<br />

+ J 2 ⎩<br />

n 2 >n 1<br />

(<br />

∑<br />

1≤n 1 ≤L<br />

}<br />

a(n 1 − 1, n 2 ) + a(n 1 , n 2 − 1) + a(n 1 + 1, n 2 ) + a(n 1 , n 2 + 1) + L − 8 )<br />

a(n 1 , n 2 ) |n 1 , n 2 〉<br />

2<br />

⎫<br />

(<br />

) ⎬<br />

a(n 1 , n 1 ) + a(n 1 + 1, n 1 + 1) − 2a(n 1 , n 1 + 1) |n 1 , n 1 + 1〉<br />

⎭ .<br />

If we impose the requirement that<br />

a(n 1 , n 1 ) + a(n 1 + 1, n 1 + 1) − 2a(n 1 , n 1 + 1) = 0 (5.1)<br />

then the second bracket in the eigenvalue equation vanishes <strong>and</strong> the eigenvalue problem<br />

reduces to the following equation<br />

2(E − E 0 )a(n 1 , n 2 ) = J [ 4a(n 1 , n 2 ) − ∑<br />

a(n 1 + σ, n 2 ) + a(n 1 , n 2 + σ) ] . (5.2)<br />

σ=±1<br />

Substituting in eq.(5.1) the Bethe ansatz for a(n 1 , n 2 ) we get<br />

Ae (p 1+p 2 )n + Be i(p 1+p 2 )n + Ae (p 1+p 2 )(n+1) + Be i(p 1+p 2 )(n+1)<br />

(<br />

)<br />

− 2 Ae i(p 1n+p 2 (n+1)) + Be i(p 2n+p 1 (n+1))<br />

= 0 .<br />

}<br />

– 63 –

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!