22.10.2014 Views

CERFACS CERFACS Scientific Activity Report Jan. 2010 – Dec. 2011

CERFACS CERFACS Scientific Activity Report Jan. 2010 – Dec. 2011

CERFACS CERFACS Scientific Activity Report Jan. 2010 – Dec. 2011

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

TABLE DES FIGURES<br />

6 Computational Fluid Dynamics 127<br />

2.1 Left : counterflow diffusion flame configuration ; Right : spatial profiles of soot volume<br />

fraction in the ethylene/oxygen/nitrogen counterflow diffusion flame with varying oxygen<br />

content in the oxidizer stream. Comparison between calculations (lines) and experiments<br />

(symbols). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132<br />

2.2 Left : sketch of the particle-laden slab configuration. Right : instantaneous fields of Random<br />

Uncorrelated Energy (top) and droplet number density (bottom) in the vertical cut plane<br />

of the particle-laden slab configuration. Comparison between Euler-Lagrange simulations<br />

projected on the Eulerian grid (left column) and Euler-Euler simulations (right column). . . 133<br />

2.3 Top : geometry of the Mercato configuration of ONERA. Bottom : Instantaneous field of<br />

droplet diameter in the Mercato configuration. . . . . . . . . . . . . . . . . . . . . . . . . 134<br />

2.4 Typical probability map for the success rate of ignition after energy deposit by a sparking<br />

device obtained in the Mercato configuration of ONERA, through the statistical analysis of<br />

non-reacting LES predictions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135<br />

2.5 Direct Numerical Simulation of a transcritical mixing layer. . . . . . . . . . . . . . . . . . 135<br />

2.6 Combustion variability in a four-valve spark ignition engine : iso-surface of temperature for<br />

4 consecutive LES cycles (same crank angle). . . . . . . . . . . . . . . . . . . . . . . . . 136<br />

2.7 Visualization of the flame propagation past repeated obstacles (AVBP results). Velocity field<br />

and iso-surfaces of reaction rate in the combustion venting chamber of Sydney. . . . . . . 137<br />

2.8 Large Eddy Simulation of azimuthal unstable modes in a full annular burner. Left :<br />

configuration of a single sector. Center : instantaneous pressure field on combustor skin.<br />

Right : isosurfaces of velocity colored by temperature. PhD of P. Wolf. . . . . . . . . . . . 139<br />

2.9 Radiation source term of one refinery furnace burner (W/m 3 ). . . . . . . . . . . . . . . . 141<br />

2.10 Instabilities mechanism (left) and fluid-structure interaction (right) in the rocket<br />

configuration. The thermal inhibitor vibrates and creates vortices which impact on the nozzle.141<br />

2.11 (a) Transversal instantaneous view of the LES velocity field prediction for ribbed cooling<br />

channel typical of turbine blade cooling systems and (b) validation of the predictions<br />

obtained with several grid resolution and modeling tools. . . . . . . . . . . . . . . . . . . 142<br />

2.12 Conjugate heat transfer prediction obtained by use of a massively parallel solution applied<br />

to a gas turbine combustor : field of wall temperature complemented by an iso-surface of<br />

temperature, allowing to visualize the flame position in the LES instantaneous prediction<br />

used in the coupled solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143<br />

2.13 Combustion in a full aeronautical engine : temperature field on a cylinder passing through<br />

the axis of the swirlers when all of them (left) or only one of them (right) are fed with fuel<br />

(ANR SIMTUR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144<br />

3.1 Application of a UQ method to turbomachine configurations : influence of inlet turbulent<br />

Reynolds number Re t and turbulent intensity Tu on (a) the transition abscissa in a turbine<br />

guide vane (the leading edge, resp. the trailing edge, is located at S = 0mm, resp.<br />

S = 85mm) and (b) the wall heat flux. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147<br />

3.2 Coupling of two elsA simulations with the code coupling tool Open-PALM. The fields,<br />

colored with the density, show that the wake generated at the inlet of the upstream channel<br />

(up) is transmitted to the downstream one (bottom). . . . . . . . . . . . . . . . . . . . . . 148<br />

3.3 Application of MARS to a high-pressure turbine test case : (a) source of entropy production<br />

and (b) view of the entropy production at 95% of the blade span. . . . . . . . . . . . . . . 149<br />

3.4 Application of HBT to compressor CREATE. Entropy field at 50% of the compressor span. 151<br />

3.5 Influence of the casing treatment on the tip leakage vortex (TLV) in a transonic compressor.<br />

Left : smooth wall and right : casing treatment case. . . . . . . . . . . . . . . . . . . . . . 151<br />

<strong>CERFACS</strong> ACTIVITY REPORT<br />

xi

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!