22.10.2014 Views

CERFACS CERFACS Scientific Activity Report Jan. 2010 – Dec. 2011

CERFACS CERFACS Scientific Activity Report Jan. 2010 – Dec. 2011

CERFACS CERFACS Scientific Activity Report Jan. 2010 – Dec. 2011

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

TABLE DES FIGURES<br />

3.6 LES results with elsA in NASA rotor 37 : (a) Instantaneous flow field shaded with the<br />

density gradient and (b) comparison of efficiency curves (grid 1 : 10M cells, grid 2 : 25M<br />

cells, grid 3 : 100M cells). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152<br />

3.7 Application of LES to the MUR235 test case : (a) instantaneous flow field colored by density<br />

gradient gradρ/ρ (mark 1 is related to the normal shock and mark 2 to vortices produced<br />

by the impact of freestream turbulence) and (b) wall heat transfer coefficient predicted with<br />

structured (elsA) and unstructured (AVBP) flow solvers. . . . . . . . . . . . . . . . . . . . 154<br />

3.8 Comparison of PIV measurements (up) with LES predictions (down) in a ribbed channel<br />

configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155<br />

4.1 LES with wall modeling on supersonic plane channel flow compared to Coleman DNS :<br />

Mach = 1.5 (bottom) and Mach = 3 (top). . . . . . . . . . . . . . . . . . . . . . . . . . . 157<br />

4.2 Jet in cross flow : embedded LES simulation. . . . . . . . . . . . . . . . . . . . . . . . . 158<br />

4.3 Pressure coefficient field with incidence effect . . . . . . . . . . . . . . . . . . . . . . . . 160<br />

4.4 Fan/Nacelle Configuration (axial momentum and blade pressure) . . . . . . . . . . . . . . 161<br />

4.5 Coupled simulation between LES (AVBP solver) and the scoop temperature field (AVTP<br />

solver). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161<br />

4.6 Noise computation of a subsonic jet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162<br />

4.7 Airfoil turbulence interaction noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163<br />

4.8 3D LES simulation of a rod-airfoil interaction. Comparison with experiment. . . . . . . . 163<br />

7 Aviation and Environment 177<br />

2.1 Left : minimum static pressure coefficient along the vortex centreline. Right : instantaneous<br />

crossflow velocity field (colour) and particles location (dots). . . . . . . . . . . . . . . . . 181<br />

2.2 Spatial distribution of ice crystals for different atmospheric situations : from left to right :<br />

no turbulence, mild turbulence and strong turbulence. . . . . . . . . . . . . . . . . . . . . 182<br />

2.3 Large-eddy simulations of atmospheric turbulence at Kilometer scale : Snapshots of<br />

potential temperature fluctuations (left) and spectra of turbulent kinetic energy (right) . . . 183<br />

2.4 Computational domain (left) and Mach number in a longitudinal cut (right) . . . . . . . . 184<br />

2.5 Time evolution of the ozone content after an Titan 4 launch at 15 et 40 km. . . . . . . . . . 186<br />

3.1 Distribution of the concentration of HOCl computed by the reduced model . . . . . . . . 188<br />

3.2 Evolution of a Gaussian concentration advected by vortex centred at the equator. Left :<br />

initial state, middle : after 600 iterations, right : after 1000 iterations. . . . . . . . . . . . . 189<br />

3.3 Reduction in the ozone formation due to the use of alternate fuels at the 2026 horizon . . . 190<br />

xii <strong>Jan</strong>. <strong>2010</strong> – <strong>Dec</strong>. <strong>2011</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!