04.11.2014 Views

Manual pCoOEM Bicircuit - Rhoss

Manual pCoOEM Bicircuit - Rhoss

Manual pCoOEM Bicircuit - Rhoss

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Electronic board<br />

PCO-OEM twin circuit<br />

USER MANUAL<br />

<strong>Rhoss</strong> S.p.A. S.A.T.<br />

Rev. 1.0 20/01/05 1


Summary / Contents<br />

1 Introduction 6<br />

2 Inlet outlet list 7<br />

2.1 Digital outlets 7<br />

2.2 Analogic outlets 7<br />

2.3 Digital inlets 7<br />

2.4 Analogic inlets 7<br />

2.5 Considerations 8<br />

2.6 Inlets configurations and digital outlets 8<br />

2.7 B4 multyfunction analogic enter 8<br />

3 On – Off and Unit state 10<br />

3.1 On - Off 10<br />

3.1.1 Used inlets 10<br />

3.1.2 Used parameters 10<br />

3.1.3 Working descriptions 10<br />

3.2 Unit state 10<br />

4 Main circulation pump management 11<br />

4.1 On/Off Main/s pump/s 11<br />

4.1.1 Used parameters 11<br />

4.1.2 Used outlets 11<br />

4.1.3 Working description 11<br />

4.2 Working forcing of the main circulation pump 12<br />

4.3 Second pump management 13<br />

4.4 Pump/s management in case of water flow alarm 13<br />

4.4.1 Used inlets 13<br />

4.4.2 Used parameters 13<br />

4.4.3 Used outlets 13<br />

4.4.4 Working description with single pump 13<br />

4.4.5 Working description with double pump 13<br />

5 Thermoregolation 15<br />

5.1 Summer/winter commutation 15<br />

5.1.1 Used inlets 15<br />

5.1.2 Used parameters 15<br />

5.1.3 Used outlets 15<br />

5.1.4 Working description 15<br />

5.2 Setpoint set up 16<br />

5.2.1 Used parameters 16<br />

5.2.2 Working description 16<br />

<strong>Rhoss</strong> S.p.A. S.A.T.<br />

Rev. 1.0 20/01/05 2


5.3 Control setpoint compensation 16<br />

5.3.1 Used inlets 16<br />

5.3.2 Used parameters 16<br />

5.3.3 Working description 16<br />

5.4 Request calculation of air/water units 18<br />

5.4.1 Used inlets 18<br />

5.4.2 Used parameters 18<br />

5.4.3 Used outlets 18<br />

5.5 Working description 18<br />

5.5.1 Temperature regolation in chiller modality 18<br />

6 Compressors 22<br />

6.1 Refrigerating circuit types 22<br />

6.2 Safety delay times 22<br />

6.2.1 Turn off minimum time 22<br />

6.2.2 Tme between starting times of the same compressor 22<br />

6.2.3 Working minimum time 22<br />

6.2.4 Time between starting times of different compressors / Time<br />

between turn offs of different compressors 22<br />

6.3 Rotation 23<br />

7 Condensation control/Evaporation 24<br />

7.1.1 Used inlets 24<br />

7.1.2 Used parameters 24<br />

7.1.3 Used outlets 24<br />

7.2 Working description 24<br />

7.2.1 Chiller working 25<br />

7.2.2 Pre-ventilation 25<br />

7.2.3 Post-ventilation 26<br />

7.2.4 Heat pump working 26<br />

7.2.5 Pre-alarm of high temperature/pressure 26<br />

8 Defrost 28<br />

8.1.1 Used inlets 28<br />

8.1.2 Used parameters 28<br />

8.1.3 Used outlets 28<br />

8.2 Working description 28<br />

8.3 defrost typology 30<br />

8.3.1 Contemporary 30<br />

8.3.2 Separated 30<br />

8.4 Compressors and dripping 31<br />

8.5 Fan and Condensation 32<br />

8.6 Low pressure alarm from pressure switch 32<br />

<strong>Rhoss</strong> S.p.A. S.A.T.<br />

Rev. 1.0 20/01/05 3


9 Time bends 33<br />

10 Devices contactor 34<br />

10.1.1 Used parameters 34<br />

10.1.2 Used outlets 34<br />

10.2 Working description 34<br />

11 Alarms 35<br />

11.1 Display - Reset 35<br />

11.2 Alarm log 35<br />

1.1 Alarm table 36<br />

11.3 Antifreezing management 40<br />

11.3.1 Used inlets 40<br />

11.3.2 Used parameters 40<br />

11.3.3 Used outlets 40<br />

11.3.4 Working description 40<br />

11.4 Flow alarm management 41<br />

11.4.1 Used inlets 41<br />

11.4.2 Used parameters 41<br />

11.4.3 Used outlets 41<br />

11.4.4 Working description 41<br />

11.5 Empty unit warnig signal 41<br />

11.5.1 Used inlets 41<br />

11.5.2 Used parameters 41<br />

11.5.3 Used outlets 41<br />

11.5.4 Working description 41<br />

11.6 Phase controller 42<br />

11.6.1 Used inlets 42<br />

11.6.2 Used parameters 42<br />

11.6.3 Used outlets 42<br />

11.6.4 Working description 42<br />

12 Users interface and parameters 44<br />

12.1 Autoconfiguration of the users interface 44<br />

12.2 PGD lay-out 44<br />

12.2.1 LED signalling 44<br />

12.2.2 Keys utilization 44<br />

12.3 Password definition of protected branches access 45<br />

12.4 Set up parameters list 45<br />

13 Supervisor 57<br />

13.1 Variables: Digital - Whole - Analogic 57<br />

13.2 Variables database for LonMark protocol 62<br />

<strong>Rhoss</strong> S.p.A. S.A.T.<br />

Rev. 1.0 20/01/05 4


13.2.1 Digital variables 63<br />

13.2.2 Analogic variables 63<br />

<strong>Rhoss</strong> S.p.A. S.A.T.<br />

Rev. 1.0 20/01/05 5


1 INTRODUCTION<br />

This software personalised for <strong>Rhoss</strong> S.p.A. will proceed at the control and regulation of<br />

single/twin/fourth-compressor chiller units, single/twin-circuit; with the possibility to work in chiller<br />

modality or heat pump, by a pCOEM for the management of <strong>Rhoss</strong> personalised double-circuit.<br />

The software will include the following characteristics:<br />

• Chiller + heat pump<br />

• Air/water<br />

• Single/twin/fourth-compressor<br />

• Single/twin-circuit<br />

• Pump/s control of main circulation<br />

• Pressure condensation control of 1 or 2 fan rows<br />

• Management of the contemporary and separated defrost in temperature/pressure<br />

• System and circuit alarm<br />

• Alarm log<br />

• Communication to the serial supervisor system<br />

We provide the use of a PGDO remote keyboard, with a <strong>Rhoss</strong> personalised keyboard.<br />

<strong>Rhoss</strong> S.p.A. S.A.T.<br />

Rev. 1.0 20/01/05 6


2 INLET OUTLET LIST<br />

Is provided the management of different types of unit.<br />

The selection takes place for the combination of four parameters of set up:<br />

• number of installed compressors 1-2-4<br />

• number of refrigerating circuits 1-2<br />

• type of condensation Air/water<br />

• way of unit working Chiller – Heat Pump<br />

2.1 Digital outlets<br />

Device Code Reference for EasyTools<br />

Compressor 1 J3A/B Digital output 1 peg (like for single circuit)<br />

Compressor 2 J4A/B Digital output 2 peg (like for single circuit)<br />

Compressor 1 J5A/B Digital output 1 PECO address 0<br />

Compressor 2 J6A/B Digital output 2 PECO address 0<br />

Fan circ-1 J7 Digital output 3 peg (like for single circuit)<br />

Pump 1 J8 Digital output 4 peg (like for single circuit)<br />

Evaporator electrical heater J9 Digital output 5 peg (like for single circuit)<br />

Pump 2 / Recovery valve J10 Digital output 6 peg (like for single circuit)<br />

Cycle inversion valve circ-1 J11 Digital output 7 peg (like for single circuit)<br />

Fan circ-2 J12 Digital output 3 PECO address 0<br />

Cycle inversion valve circ-2 J13 Digital output 4 PECO address 0<br />

Alarm J14 Digital output 8 peg (like for single circuit)<br />

2.2 Analogue outlets<br />

Device Code reference for EasyTools<br />

Fan circ-1 Y1 Analogue output 1 pGE conf. 0/10V<br />

Fan circ-2 Y2 Analogue output 2 pGE conf. 0/10V<br />

2.3 Digital inlets<br />

Device Code Reference for EasyTools<br />

High pressure switch circ-1 ID1 Digital outlet 8 pGE (like for single circuit)<br />

Thermal protector for compressor 1 ID2 Digital outlet 5 pGE (like for single circuit)<br />

Thermal protector for compressor 1 ID3 Digital outlet 1 pGE (like for single circuit)<br />

Fan thermal protector ID4 Digital outlet 2 pGE (like for single circuit)<br />

Low pressure switch circ-1 ID5 Digital outlet 3 pGE (like for single circuit)<br />

Differential pressure switch ID6 Digital outlet 4 pGE (like for single circuit)<br />

Summer/Winter selector ID7 Digital outlet 6 pGE (like for single circuit)<br />

Remote control selector ID8 Digital outlet 7 pGE (like for single circuit)<br />

High pressure switch circ-2 ID9 Digital outlet 1 pCOE address 0<br />

Thermal protector for compressor 3 ID10 Digital outlet 2 pCOE address 0<br />

Thermal protector for compressor 4 ID11 Digital outlet 3 pCOE address 0<br />

Low pressure switch circ-2 ID12 Digital outlet 4 pCOE address 0<br />

2.4 Analogues inlets<br />

Device Code Reference for EasyTools<br />

Water inlet temperature B1 pGE B1 conf. NTC (like for single circuit)<br />

Water outlet temperature circ-1 B2 pGE B2 conf. NTC (like for single circuit)<br />

<strong>Rhoss</strong> S.p.A. S.A.T.<br />

Rev. 1.0 20/01/05 7


Defrost temperature circ-1 B3 pGE B3 conf. NTC (like for single circuit)<br />

Recovery temperature 1 / Outside air B4 pGE B4 conf. NTC (like for single circuit)<br />

temperature<br />

Recovery temperature 2 B5 pGE B5 conf. NTC (like for single circuit)<br />

Condenser pressure circ-1 B6 pGE B6 conf. 0-5V (like for single circuit)<br />

Water outlet temperature circ-2 B7 pGE B7 conf. NTC<br />

Defrost temperature circ-2 B8 pGE B8 conf. NTC<br />

Condenser pressure circ-2 B9 PCOE address 0 B1 conf. 0-5V<br />

2.5 Considerations<br />

The way of working decided for the digital inlets (except the remote On/Off inlet) provides the high<br />

logic state (1) in case of opened contact, like already did for all the applications on any Carel<br />

hardware.<br />

At the qualification of the pressure transducer the software will automatically proceed at the<br />

following operations:<br />

• disqualification of the analogue inlet, related to the condensing coil temperature<br />

• control of the defrost process according to the pressure values of condensation instead of the<br />

temperature of the condensing coil.<br />

The disconnection of the pressure trasductor will involve the automatic return at working in<br />

temperature of all the interested functions and if qualified, at the exclusion of the proportional<br />

control of condensation.<br />

2.6 Digital inlets/outlets Configuration<br />

To allow the interface dialogue of the system with different nature devices, among the<br />

manufacturer parameters, protected by specific passwords, are provided with set up parameters of<br />

the working modality of the inlets and the digital outlets.<br />

They can be clearly set up, the working logic of each inlet or outlet, on the main card according to<br />

the following correspondences:<br />

Digital inlets<br />

N.C. during the normal working of the unit the contact is closed (logic state 0), the contact<br />

opening, involves an action from the program (logic state 1)<br />

N.O. during the normal working of the unit the contact is opened (logic state 0), the contact<br />

closing, involves an action from the program (logic state 1)<br />

Digital outlets<br />

N.C. the activation of a loading connected to the card pCO1OEM is caused from a closing of an<br />

associated contact (references to the inlet/outlet tables)<br />

N.O. the activation of a loading connected to the card pCO1OEM is caused from an opening of an<br />

associated contact (references to the inlet/outlet tables)<br />

2.7 B4 multifunction analogue inlet<br />

The management of the B4 analogue inlet provides distinct modalities if is qualified or no, the heat<br />

recovery function and the compensation of the adjusting setpoint based on the values of the<br />

outside temperature.<br />

The following table summarises the correspondences between the analogue inlet functionality and<br />

particular unit enabled functions.<br />

<strong>Rhoss</strong> S.p.A. S.A.T.<br />

Rev. 1.0 20/01/05 8


Heat<br />

qualification<br />

X<br />

recovery<br />

Setpoint compensation<br />

qualification<br />

Water temperature<br />

probe of recovery coil<br />

inlet<br />

B4<br />

Outside<br />

temperature probe<br />

X<br />

B4<br />

X X Not provided unit configuration (in any case<br />

priority at the heat recovery)<br />

air<br />

As you see with disqualified recovery, the B4 analogue inlet can be used for read the temperature<br />

of the outdoor air, with the purpose of the setpoint compensation of the unit regulation.<br />

If the heat recovery function is qualified, having this more priority, will imply the use of the same<br />

inlet for the reading of the inlet water temperature at the recovery coil.<br />

<strong>Rhoss</strong> S.p.A. S.A.T.<br />

Rev. 1.0 20/01/05 9


3 ON – OFF AND UNIT STATE<br />

3.1 On - Off<br />

3.1.1 Used inlets<br />

• Remote On/Off contact<br />

3.1.2 Used parameters<br />

• On/Off qualification from a remote supervisor<br />

• On/Off control from keyboard<br />

• Logic configuration of the 8 digital inlet working<br />

3.1.3 Working description<br />

The switch-on or switch-off of the unit is possible in three distinct ways, differentiated each other<br />

from a different priority grade:<br />

1. Keyboard<br />

2. Digital inlet<br />

3. Supervisor<br />

The keyboard has the main priority, only if switched on from keyboard; the unit can be afterwards<br />

switched-off/switched-on from a digital inlet or supervisor.<br />

The switch-on or switch-off of the keyboard unit will occur by pressing down the key [On/Off] for 2<br />

seconds in case of use of the PGD user interface terminal.<br />

Switch-on or switch-off from digital inlet has lower priority than the keyboard control, but higher<br />

than the supervisor.<br />

Switch-on or switch-off from supervisor is an actionable function.<br />

Each of the three interventions produces a specific message in the main menu mask that identifies<br />

the exact situation of the unit working.<br />

For what concern the working modality of the digital inlet will depend from the manufacturer<br />

parameter set-up of the working logic set-up of the digital specific inlet<br />

For what concern the supervisor, the expected working logic means:<br />

High logic state (1) unit on<br />

Low logic state (0) unit off<br />

3.2 Unit condition<br />

It’s provided the visualisation of the exact working state of the unit by an appropriate inscription<br />

reproduced in the main menu mask:<br />

On”<br />

“Off by alarm”<br />

“Off by supervisor”<br />

“Off by Digital inlet ”<br />

“Off by Keyboard ”<br />

The stand by status is the situation when ,with the unit in ‘’on’’,all the devices are off after the reach<br />

of the set point.<br />

If you’re using the PST user interface the unit in is signalled by the display of the regulation set<br />

point.<br />

The status of unit off ,but correctly supplied, is signalled by the led og the decimal point on,with all<br />

the display digit off;the alarm status will be signalled by the alarm red led lighting.<br />

<strong>Rhoss</strong> S.p.A. S.A.T.<br />

Rev. 1.0 20/01/05 10


4 MAIN CIRCULATION PUMP MANAGEMENT<br />

4.1 Switch-on/Switch-off main/s pump/s<br />

4.1.1 Used parameters<br />

• Selection of the working mode of the main circulation pump<br />

• Pump-compressors delay switch-on time<br />

• Pump-compressors delay switch-off time<br />

• Number of pumps<br />

• Rotation time among pumps<br />

• Pump rotation test<br />

• Rotation time among test pumps<br />

• Working mode<br />

4.1.2 Used outlets<br />

• Main circulation pump 1<br />

• Main circulation pump 2<br />

4.1.3 Working description<br />

Everything will be said after, is worth for both pumps, if is not differently specified.<br />

The second pump can be activated instead of the recovery outlet.<br />

The pump can be configured to work in two different modes by the manufacturer’s parameter<br />

protected by a password:<br />

• continuous working<br />

• working after the electronic control call (compressor)<br />

4.1.3.1 Continuous working<br />

The pump is active during all the working time.<br />

There will be managed: a delay time at the activation of the devices from the unit switch-on<br />

(therefore the pump), and a delay time of the pump switch-off from the unit switch-off.<br />

<strong>Rhoss</strong> S.p.A. S.A.T.<br />

Rev. 1.0 20/01/05 11


4.1.3.2 Working over electronic control’s call<br />

Normally, when the setpoint is reached, the pump is switched-off; as soon as a thermostatic<br />

request appears, the pump is immediately switched-on and only after the delay time at the<br />

activation of the devices the requested hot/cold capacity steps are activated.<br />

At the end of the thermostatic request the hot/cold devices are switched-off, and only after the<br />

delay time at the set up pump switching-off , is stopped.<br />

In case of defrost, during the stages when the compressor is switched-off by refrigerating cycle<br />

inversion, the pump remains switched-on.<br />

TERM<br />

ON<br />

OFF<br />

Time<br />

COMPR<br />

ON<br />

OFF<br />

Time<br />

WP<br />

ON<br />

OFF<br />

Pa P02<br />

Pa P03<br />

Time<br />

TERM Electronic control<br />

WP Main circulation pump<br />

P02 Compressors-pump switch-on delay<br />

COMPR Compressors conditions<br />

Time Time<br />

P03 Pump-compressors switch-off delay<br />

4.2 Main circulation pump working forcing<br />

Exist some working situations that forcing the switch-on main circulation pump is necessary:<br />

• After an antifreeze electrical heater intervention<br />

• After an antifreeze protection intervention<br />

<strong>Rhoss</strong> S.p.A. S.A.T.<br />

Rev. 1.0 20/01/05 12


4.3 Second pump management<br />

The second pump can be enabled instead of the recovery outlet.<br />

The qualification comes by a special parameter given from the manufacturer menu.<br />

If the second pump is qualified, in the “Pump” menu you will find the parameters to manage the<br />

rotation and the pumps working mode:<br />

In fact is provided that after a certain number of settable hours (cumulative) happens the pumps<br />

rotation. During the passage from each other pump the compressors are stopped and before<br />

restart it must spend a certain “Compressors-pump switching-on delay time”.<br />

It’s possible qualify the rotation test among the pumps (in minutes).<br />

A further parameter fixes the working time of the pumps:<br />

o automatic (the time rotation is managed);<br />

o only pump 1 (the pump 1 will be always forced);<br />

o only pump 2 (the pump 2 will be always forced).<br />

As well as by time, the pumps will rotate even in case of relief of water flow lack.<br />

4.4 Pump/s management in case of water flow alarm<br />

4.4.1 Used inlets<br />

• Digital inlet of the differential pressure switch of the evaporator water.<br />

4.4.2 Used parameters<br />

• Number of maximum consecutive interventions per pump of the flow alarm.<br />

4.4.3 Used outlets<br />

• Main 1 circulation pump<br />

• Main 2 circulation pump<br />

4.4.4 Working description with single pump<br />

In case of water flow alarm, relieved from the differential pressure switch fixed on the evaporator,<br />

the pump working will depend from the reset time of the alarm.<br />

It’s managed a maximum number of water flow alarm with consecutive manual reset, witch, over<br />

that the alarm works with manual reset.<br />

The counting is settable in “factory” menu->Alarm menu is reset every time the pump works<br />

continuously for at least a time of:<br />

Flow alarm delay at the start-up of the pump (def.10sec) + running flow alarm delay(def.3sec) + 5<br />

set seconds.<br />

With automatic reset alarm the pump keeps running in spite of the alarm condition, will be reset the<br />

by-pass time of the alarm repeating the cycle up to the reattachment of the maximum number of<br />

the repeating alarms.<br />

With the manual reset the pump will be switched-off until the reset of keyboard condition by a<br />

special key.<br />

4.4.5 Working description with double pump<br />

In case of water flow alarm, relived from the differential pressure switch fixed on the evaporator,<br />

the working of the pumps will depend from the alarm-reset type.<br />

It’s managed a maximum number of water flow alarm with consecutive automatic reset for each<br />

pump, witch, over that the alarm works with manual reset.<br />

The counting settable in “Factory” menu -> Alarm menu is reset every time the pump is<br />

continuously working for at least a time of:<br />

Flow alarm delay at the start-up of the pump (def.10sec) + running flow alarm delay (def.3sec) + 5<br />

set seconds.<br />

Every time a alarm starts, will be forced a rotation among the pumps, with following switching-off of<br />

the compressors (if switched-on), and reset of the alarm by-pass times repeating the cycle until<br />

<strong>Rhoss</strong> S.p.A. S.A.T.<br />

Rev. 1.0 20/01/05 13


one of the two pumps won’t give the OK flow signal, or until the reaching of the maximum number<br />

of repetitive alarms per pump.<br />

With manual reset the pump/s will be switched-off until the reset of the keyboard condition by<br />

special key.<br />

So there are 2 distinct alarms:<br />

o pump alarm 1 damaged<br />

o pump alarm 2 damaged<br />

<strong>Rhoss</strong> S.p.A. S.A.T.<br />

Rev. 1.0 20/01/05 14


5 THERMOREGULATION<br />

5.1 Summer/winter commutation<br />

5.1.1 Used inlets<br />

• Digital inlets summer/winter commutation<br />

5.1.2 Used parameters<br />

• Qualification at the summer/winter commutation from digital inlet.<br />

• Qualification at the summer/winter commutation from supervisor.<br />

• Summer/winter commutation from keyboard.<br />

• Logic configuration of the 7 digital inlet working (Summer/winter selection)<br />

• Logic configuration of the 9 digital outlet working (4way valve refrigerating cycle inversion)<br />

5.1.3 Used outlets<br />

• Refrigerating cycle inversion valve<br />

5.1.4 Working description<br />

As the control of the heat pump+chiller unit is provided, the commutation process of the<br />

summer/winter working will be managed.<br />

The selection can be done:<br />

o From keyboard: always active on the CH/HP units. From the main mask by a long pressing of<br />

the Mode/Enter key of the PGD.<br />

o From digital outlet: If the process is qualified (menu “Rem.Summer/Winter”), by the digital7<br />

inlet. The logic (N.C./N.O.) decided for the selection digital inlet of the chiller mode or heat<br />

pump will depend from the set up of the relative manufacturer parameter.<br />

Inlet logic State Meaning<br />

NO<br />

Open Winter<br />

Close Summer<br />

NC<br />

Open Summer<br />

Close Winter<br />

The working logic (N.C./N.O.) decided for the digital outlet, related at the inversion valves of<br />

the refrigerating cycle, will depend from the set up of the related manufacturer’s parameter.<br />

The real working state is sent to the supervision system by an opportune variable, while, on<br />

board unit by an opportune visualisation in the setpoint masks and in the main menu.<br />

o From remote to supervisor: If the process (”User” menu) is activated by the digital variable<br />

with address 1.<br />

At each condition is given a priority: the selection by keyboard and from supervisor has the same<br />

priority, while if is qualified the digital inlet control has priority on everything. In any case the<br />

supervisor will always report the correct working way of the unit.<br />

If the commutation of the working mode of the unit is requested, every device will be switched-off<br />

and after a set delay of 3 seconds from the switch-off, the refrigerating cycle inversion will be<br />

operated; 2 seconds after the refrigerating cycle inversion, the devices control will be reactivated,<br />

witch can be re-switched-on after the set up safety timings are satisfied.<br />

The working mode (N.C./N.O.) decided for the digital outlet, related at the inversion valves of the<br />

refrigerating cycle, will depend from the set-up of the related manufacturer’s parameter.<br />

The effective state of working is sent at the supervision system, while onboard unit by an<br />

opportune visualisation in the main mask.<br />

<strong>Rhoss</strong> S.p.A. S.A.T.<br />

Rev. 1.0 20/01/05 15


5.2 Setpoint set-up<br />

5.2.1 Used parameters<br />

• Summer regulation setpoint<br />

• Winter regulation setpoint<br />

• Lower limit of the summer setpoint set-up<br />

• Higher limit of the summer setpoint set-up<br />

• Lower limit of the winter setpoint set-up.<br />

• Higher limit of the winter setpoint set-up.<br />

5.2.2 Working description<br />

The thermostatic regulation of the unit is based on two distinct regulation setpoint:<br />

o Summer regulation setpoint (chiller)<br />

o Winter regulation setpoint (heat pump).<br />

Those values will be settable in one of the setpoint masks. The limits of both setpoint will be<br />

adjustable from user mask, dedicated and protected from password.<br />

5.3 Compensation of the setpoint regulation<br />

5.3.1 Used inlets<br />

• inlet of the outdoor air temperature<br />

5.3.2 Used parameters<br />

• Summer regulation setpoint<br />

• Winter regulation setpoint<br />

• Qualification of the Setpoint compensation<br />

• Offset compensation of the summer setpoint<br />

• Offset compensation of the winter setpoint<br />

• Outdoor threshold temperature for summer setpoint compensation<br />

• Outdoor threshold temperature for winter setpoint compensation<br />

• Outdoor temperature delta for summer setpoint compensation<br />

• Outdoor temperature delta for winter setpoint compensation<br />

5.3.3 Working description<br />

In order to an energetic conservation and the possibility of working of the unit with particular heavy<br />

temperatures is provided a chance to change the regulation setpoint automatically, according to<br />

the temperature conditions of the outdoor air.<br />

If qualified, the compensation function of the setpoint will work out the algebraic addition the set-up<br />

setpoint value and the calculated value in order of the outdoor air temperature according to the<br />

modality of unit working.<br />

<strong>Rhoss</strong> S.p.A. S.A.T.<br />

Rev. 1.0 20/01/05 16


Positive offset<br />

OFFSETC<br />

HEAT PUMP<br />

WORKING<br />

STE<br />

CHILLER<br />

WORKING<br />

OFFSETHP<br />

DELTA_H0<br />

TE[°C]<br />

STE<br />

DELTA_H<br />

DELTA_C<br />

OFFSETC<br />

OFFSETHP<br />

TE<br />

Outdoor temperature setpoint (distinct for chiller working or heat pump)<br />

Temperature delta in heat pump mode<br />

Temperature delta in chiller mode<br />

Offset set point in chiller mode<br />

Offset setpoint in heat pump mode<br />

Outdoor air temperature<br />

Negative offset<br />

HEAT PUMP CHILLER<br />

WORKING<br />

STE<br />

WORKING<br />

TE[°C]<br />

OFFSETHP<br />

OFFSETC<br />

DELTA_H0<br />

STE<br />

DELTA_H<br />

DELTA_C<br />

OFFSETC<br />

OFFSETHP<br />

TE<br />

Outdoor temperature setpoint (distinct for chiller mode or heat pump)<br />

Temperature delta in heat pump mode<br />

Temperature delta in chiller mode<br />

Offset set point in chiller mode<br />

Offset setpoint in heat pump mode<br />

Outdoor air temperature<br />

The value of the temperature offset for the definition of the compensation of the regulation setpoint<br />

can be set up, clearly for winter or summer mode, with positive or negative values, producing then,<br />

the increase or decrease of the regulation setpoint, according to the particular requirements.<br />

<strong>Rhoss</strong> S.p.A. S.A.T.<br />

Rev. 1.0 20/01/05 17


5.4 Calculation of the request in air/water units<br />

5.4.1 Used inlets<br />

• Water temperature analogue inlet, evaporator-condenser inlet<br />

• Digital inlet of summer/winter commutation.<br />

5.4.2 Used parameters<br />

• Summer regulation setpoint<br />

• Winter regulation setpoint<br />

• Temperature regulation band<br />

• Unit selection air/water type<br />

5.4.3 Used outlets<br />

• All the outlets reserved at the compressors<br />

5.5 Working description<br />

The calculation of the thermostatic request of the unit is based on a control of proportional type<br />

with lateral band, based on the temperature measure of the inlet water to the evaporator/<br />

condenser coil. If the unit is in chiller mode or heat pump the regulation band will be fixed at the<br />

right or left of the setpoint respectively.<br />

5.5.1 Temperature regulation in chiller mode<br />

Regulation example of the temperature in single-compressor units<br />

PWR<br />

STEP1<br />

STPM<br />

EIWT[°C]<br />

BND<br />

PWR Integrated power<br />

STEP1 Power step 1<br />

STPM Main regulation setpoint<br />

BND Regulation band<br />

EIWT[°C] Evaporator inlet water temperature<br />

There are 2 possible ways of compressor management: grouped and equalised. For default is<br />

equalised.<br />

The selection is done by the “En.layer device” parameter in the “configuration menu”.<br />

Example<br />

of grouped regulation (En.layer device=N) in twin-circuit four-compressor units:<br />

<strong>Rhoss</strong> S.p.A. S.A.T.<br />

Rev. 1.0 20/01/05 18


RBM<br />

S1 C1 S2 C1 S1 C2 S2 C2<br />

STPM<br />

EIWT [ºC]<br />

STPM Regulation setpoint<br />

RBM Regulation band<br />

EIWT[°C] Evaporator inlet water temperature<br />

S1 C1 Step 1 circuit 1<br />

S2 C1 Step 2 circuit 1<br />

S1 C2 Step 1 circuit 2<br />

S2 C2 Step 2 circuit 2<br />

Example of equalised regulation (En.layer device=Y) in twin-circuit four-compressor units:<br />

RBM<br />

S1 C1 S1 C2 S2 C1 S2 C2<br />

STPM<br />

EIWT [ºC]<br />

STPM Regulation setpoint<br />

RBM Regulation band<br />

EIWT[°C] Evaporator inlet water temperature<br />

S1 C1 Step 1 circuit 1<br />

S2 C1 Step 2 circuit 1<br />

S1 C2 Step 1 circuit 2<br />

S2 C2 Step 2 circuit 2<br />

<strong>Rhoss</strong> S.p.A. S.A.T.<br />

Rev. 1.0 20/01/05 19


5.5.1.1 Temperature regulation in heat pump modality<br />

Regulation example of the temperature in single-compressors units.<br />

PWR<br />

STEP1<br />

STPM<br />

EIWT[°C]<br />

BND<br />

PWR Integrated power<br />

STEP1 Power step 1<br />

STPM Main regulation setpoint<br />

BND Regulation band<br />

EIWT[°C] Evaporator inlet water temperature<br />

There are 2 possible ways of compressor management: grouped and equalised. For default is<br />

equalised.<br />

The selection is done by the “En.layer device” parameter in the “configuration menu”.<br />

Example of grouped regulation (En.layer device=N) in twin-circuit four-compressors units:<br />

RBM<br />

S2 C2 S1 C2 S2 C1 S1 C1<br />

STPM Setpoint regulation<br />

RBM Regulation band<br />

EIWT[°C]<br />

Evaporator inlet water temperature<br />

S1 C1 Step 1 circuit 1<br />

S2 C1 Step 2 circuit 1<br />

S1 C2 Step 1 circuit 2<br />

S2 C2 Step 2 circuit 2<br />

STPM<br />

EIWT [ºC]<br />

Example of equalised regulation (En.layer device=Y) in twin-circuit four-compressor units<br />

<strong>Rhoss</strong> S.p.A. S.A.T.<br />

Rev. 1.0 20/01/05 20


RBM<br />

S2 C2 S2 C1 S1 C2 S1 C1<br />

STPM Regulation setpoint<br />

RBM Regulation Band<br />

EIWT[°C] Evaporator inlet water temperature<br />

S1 C1 Step 1 circuit 1<br />

S2 C1 Step 2 circuit 1<br />

S1 C2 Step 1 circuit 2<br />

S2 C2 Step 2 circuit 2<br />

STPM<br />

EIWT [ºC]<br />

<strong>Rhoss</strong> S.p.A. S.A.T.<br />

Rev. 1.0 20/01/05 21


6 COMPRESSORS<br />

6.1 Refrigerating circuit types<br />

The software can manage the following types of unit, all with the chance of working in chiller mode<br />

or heat pump:<br />

single-circuit – single-compressor<br />

single-circuit – twin-compressor<br />

twin-circuit – twin-compressor<br />

twin-circuit – four-compressor<br />

Tandem compressors configuration<br />

Tandem compressors configuration<br />

The compressors will be of hermetic type, without any chance of power modulation by choking<br />

steps.<br />

6.2 Safety delay times<br />

For each compressor will be managed some safety delay times with the purpose to protect the<br />

working of the device restricting the working to particular conditions given from the manufacturer of<br />

the same compressor.<br />

The managed times will be:<br />

1. switch-off minimum time<br />

2. minimum time among following switch-on of the same compressor<br />

3. minimum time of working<br />

4. time among switch-on of different compressors<br />

5. time among switch-off of different compressors<br />

6.2.1 Switch-off minimum time<br />

Between a switch-off and a switch-on of the same compressor a safety time must be respected.<br />

That time will be applied even at the return from blackout deactivating the thermostatic control,<br />

protecting the compressor from switch-off of not exact last.<br />

6.2.2 Time between starting times of the same compressor<br />

From a switch-on to the next must be respected a safety time with the purpose of guarantee the<br />

minimum number of starting times per hour of the compressor.<br />

Working minimum time<br />

After the switch-on a compressor must work for a minimum time same at the indicated time<br />

independently from the thermostatic request.<br />

The switch-off can be immediate after an alarm, delayed for a decrease of request with active time.<br />

6.2.3 Time among switch-on of different compressors / Time among<br />

switch-off off different compressors<br />

In twin/four-compressor units are applied two different safety times between the switch-on and<br />

switch-off of following compressors.<br />

The applied time among the switches-on avoids the electric circuit overloud caused by the<br />

possible contemporary switch-on of two devices (for example after an alarm).<br />

The applied time among the switches-off makes gradual the power decrease in the circuit,<br />

avoiding then swinging of the requests between switch-on and switch-off.<br />

<strong>Rhoss</strong> S.p.A. S.A.T.<br />

Rev. 1.0 20/01/05 22


6.3 Rotation<br />

The compressor’s and time circuits are managed.<br />

First of all will be controlled the priority among the 2 circuits, then the priority among the 2<br />

compressors of that circuit.<br />

As previously said, in twin-circuit/four-compressor unit, are possible two kinds of compressor’s<br />

management: grouped and equalised. For default is equalised.<br />

The selection comes by the “En.layer device” parameter, in the “configuration menu”.<br />

Grouped: It always tries to bring a circuit at 100% before starting to switch-on the compressors<br />

from the other circuit.<br />

Equalised: the power is uniformly delivered among the 2 circuits.<br />

<strong>Rhoss</strong> S.p.A. S.A.T.<br />

Rev. 1.0 20/01/05 23


7 CONDENSATION/EVAPORATION CONTROL<br />

7.1.1 Used inlets<br />

• Circuit 1 condensation pressure analogue inlet<br />

• Circuit 2 condensation pressure analogue inlet<br />

• Fan thermal digital inlet<br />

7.1.2 Used parameters<br />

• Kind of ventilation control<br />

• Number of ventilation groups<br />

• Condensation pressure setpoint<br />

• Minimum fan speed<br />

• Maximum fan speed<br />

• Speed-up time<br />

• Cut-off step hysteresis<br />

• Prevention threshold of high condensation pressure of “normal” working<br />

• Prevention hysteresis of high condensation pressure of “normal” working<br />

• Prevention threshold of high condensation temperature of “normal” working<br />

• Prevention hysteresis of high condensation temperature of “normal” working<br />

• Prevention threshold of high condensation pressure during defrost<br />

• Prevention hysteresis of high condensation pressure during defrost<br />

• Prevention threshold of high condensation temperature during defrost<br />

• Prevention hysteresis of high condensation temperature during defrost<br />

• Pre-ventilation qualification<br />

• Compressors activation delay for pre-ventilation<br />

• Post-ventilation activation after high pressure alarm by trasductor and pressure switch<br />

• Post-ventilation maximum time<br />

7.1.3 Used outlets<br />

• Condensation fan control digital outlet of circuit 1<br />

• Condensation fan control digital outlet of circuit 2<br />

• Fan speed regulator 0-10V analogue outlet of circuit 1<br />

• Fan speed regulator 0-10V analogue outlet of circuit 2<br />

7.2 Working description<br />

The condense control is based on a compressor working state or on a condense pressure<br />

trasductor writing, according to the pressure probe and the kind of set control:<br />

• On/Off fan directly driven by the digital outlet of the card<br />

• Speed variation fan driven by the PWM signal present at the analogue outlet of the card,<br />

proportional to the pressure<br />

It will decide if the device workings are whether or not bound at the Compressors State:<br />

• Bound working at the compressor state: independently from the thermostatic request of<br />

condensation: With switched-off compressor/s the fan/s will keep off.<br />

• Not bound working of the compressors state: independently from the working state of the<br />

compressor/s: the fan follows the pressure value of condensation.<br />

Without the pressure trasductor the software will drive On/Off fans, bound at the working conditions<br />

of the compressor:<br />

Switched-on compressor/s switched-on fan<br />

Switched-off compressor/s switched-off fan<br />

<strong>Rhoss</strong> S.p.A. S.A.T.<br />

Rev. 1.0 20/01/05 24


If the 0÷5 Volt pressure trasductor is installed, will be possible choose the kind of On/Off ventilation<br />

control or proportional, according to the relieved pressure values. In the second case the On/Off<br />

digital outlet will be anyway driven in parallel.<br />

- If the unit has 1 ventilation group and both the pressure probe are qualified:<br />

So<br />

The highest pressure for the fan activation in summer working will be controlled<br />

The lowest pressure for the fan activation in winter working will be controlled<br />

- If the unit has 2 ventilation groups and just 1 qualified pressure probe (case possible only on<br />

contemporary defrost units)<br />

So<br />

Both ventilation groups will be controlled according to that pressure<br />

- If the unit has 2 ventilation groups and 2 qualified pressure probes<br />

Then, each group will work with his pressure probe<br />

The On/Off regulation is the same described before.<br />

The proportional regulation is lateral banded. A setpoint and a regulation band will be set-up,<br />

according to witch the power modulation will be driven.<br />

When the presence of the pressure trasductor is qualified, The condensation control will remain<br />

On/Off type.<br />

The qualification of the pressure probe and control type from terminal will be present in the same<br />

mask under the “Condensing control” menu.<br />

7.2.1 Chiller working<br />

CPRS Condensation pressure<br />

STPC Condensation setpoint<br />

RBC Condensation regulation band<br />

HCOFF Cut-off hysteresis steps<br />

MINV Minimum speed of the condensation fans<br />

MAXV Maximum speed of the condensation fans<br />

CFONOFF Condensation fan control from On-Off digital outlet<br />

CFPWM Condensation fan control from PWM analogic outlet<br />

7.2.2 Pre-ventilation<br />

THRICH<br />

CFS<br />

CMPS<br />

PVT<br />

T [s]<br />

THRICH Thermostatic request<br />

CFS Condensation fans state<br />

CMPS Compressors state<br />

PVT Pre-ventilation time<br />

T [s] Time<br />

The pre-ventilation function it’s possible activate it only in chiller working (parameter protected from<br />

manufacturer’s password), according to, after a thermostatic request, the condensation fans are<br />

switched-on sooner than the compressors.<br />

<strong>Rhoss</strong> S.p.A. S.A.T.<br />

Rev. 1.0 20/01/05 25


The delay time at the activation of the pre-ventilation compressors is a settable parameter<br />

protected from specific user’s password.<br />

7.2.3 Post-ventilation<br />

The post-ventilation function it’s possible activate it only in chiller working (parameter protected<br />

from manufacturer’s password), according to, after a high pressure alarm (by pressure switch or<br />

trasductor), the fan of the related circuit will be activated at maximum capacity for a time settable<br />

from maintenance parameter , protected from specific password.<br />

7.2.4 Heat pump working<br />

RBC<br />

MAXV<br />

CFPWM<br />

MINV<br />

HCOFF<br />

CFONOFF<br />

STPC<br />

CPRS[bar]<br />

CPRS Condensation pressure<br />

STPC Condensation setpoint<br />

RBC Condensation regulation band<br />

HCOFF Cut-off steps hysteresis<br />

MINV Condensation fans minimum speed<br />

MAXV Condensation fans maximum speed<br />

CFONOFF Condensation fan control from On-Off digital outlet<br />

CFPWM Condensation fan control from PWM analogue outlet<br />

The activation of a defrost cycle will cause the switch-off of the related fan group in heat pump<br />

mode.<br />

7.2.5 High temperature/pressure pre-alarm<br />

RBC<br />

HYST_P<br />

HYSTA_HP<br />

CPRS[bar] / TC[°C]<br />

STPC<br />

THR_P<br />

THRA_H<br />

STPC Condensation regulation setpoint<br />

RBC Condensation regulation band<br />

THR_P High condensation prevention threshold<br />

HYST_P High condensation prevention hysteresis<br />

THRA_HP High condensation alarm threshold<br />

HYSTA_HP High condensation alarm hysteresis<br />

CPRS / TC Condensation Pressure/Temperature<br />

It’s possible activate a prevention function of high pressure/temperature of condensation,<br />

according to, after a threshold and an hysteresis are set-up, a fan activation step is checked, that<br />

will bring them at the maximum speed, with the purpose to prevent the intervention of the high<br />

condensation alarm, with following compressor’s switch-off.<br />

<strong>Rhoss</strong> S.p.A. S.A.T.<br />

Rev. 1.0 20/01/05 26


Among the manufacturer’s parameters, protected from password, there is a configuration<br />

parameter of prevention<br />

control of high condensation according to, is possible activate the control<br />

of the unit only in “normal” working (management of the loads after the evaporator thermostatic<br />

request), in the only defrost phase or in both working situations.<br />

If the high condensing pressure prevention control during the defrost phase is activated, it can be<br />

done in temperature and in pressure according to the hardware configuration of the system (The<br />

presence of the pressure transducer excludes the temperature control).<br />

That process will be active even with switched-off unit; The pre-alarm fan switch-on in installations<br />

with particular environment conditions that can bring high pressure conditions with the unit off,<br />

preventively reducing the pressure, can permit the starting of the compressors in difficult<br />

circumstances.<br />

<strong>Rhoss</strong> S.p.A. S.A.T.<br />

Rev. 1.0 20/01/05 27


8 DEFROST<br />

8.1.1 Used inlets<br />

• Condenser temperature analogic inlet<br />

• Condensation pressure analogic inlet<br />

8.1.2 Used parameters<br />

• Defrost type<br />

• Defrost starting temperature threshold<br />

• Defrost ending temperature threshold<br />

• Defrost starting pressure threshold<br />

• Defrost ending pressure threshold<br />

• Delay among following defrosts<br />

• Defrost activation delay<br />

• Defrost maximum last<br />

• Delay between compressor and valve at the defrost start<br />

• Delay between compressor and valve at the end of the defrost<br />

• Fan forcing activation in dripping phase<br />

• Fan speed set-up in dripping phase<br />

8.1.3 Used outlets<br />

• Digital outlet of the refrigerating cycle inversion<br />

• All the digital outlets related to the compressors<br />

• All the digital/analogue outlets related to the condensation fans<br />

8.2 Working description<br />

C PT [bar/ ºC]<br />

DefrOffTHR<br />

DefrOnTHR<br />

t [s]<br />

∆t1 ∆t2 ∆t3 DefrAct<br />

DefrOffTHR<br />

DefrOnTHR<br />

CPT<br />

∆t 1…3<br />

DefrAct<br />

T<br />

Defrost end threshold<br />

Defrost start threshold<br />

Condensation pressure/temperature<br />

Pressure/temperature permanence partial time in the defrost<br />

activation zone<br />

Active defrost<br />

Time<br />

Only in heat pump mode we can have the defrost activation.<br />

<strong>Rhoss</strong> S.p.A. S.A.T.<br />

Rev. 1.0 20/01/05 28


If it’s whether or not the presence of the pressure transducer, the defrost will be done in<br />

temperature or in pressure, the temperature and pressure threshold for the enabling and disabling<br />

will be set-up.<br />

To start a defrost cycle the temperature/pressure must remain under the defrost start threshold,<br />

with compressor on, for a cumulative time same at the set-up activation delay time; If the<br />

temperature/pressure increases over the defrost end threshold that time must be reset, if the<br />

working way of the unit is changed (heat pump = > chiller), and if a feeding missing of the control<br />

electronic card occurs.<br />

The end of a defrost cycle can happen by temperature/pressure, if this last passes the threshold of<br />

the set-up defrost en d, or if the last passes the set-up time overtaking the ma<br />

ximum time.<br />

<strong>Rhoss</strong> S.p.A. S.A.T.<br />

Rev. 1.0 20/01/05 29


8.3 Defrost mode<br />

It’s possible to have two defrost ways:<br />

- Contemporary<br />

- Separated (not possible for the single-circuit)<br />

According to the type of unit and the type of defrost the following table will be respected<br />

Contemporary<br />

defrost<br />

Unique<br />

ventilating<br />

section<br />

Separated<br />

ventilating<br />

section<br />

Single-circuit<br />

Twin-circuit<br />

Activated<br />

Activated<br />

Activated<br />

Activated<br />

Activated press.<br />

Activated<br />

condenser temp.<br />

condenser1<br />

condenser 2<br />

pressure probe<br />

1 probe<br />

pressure 2 probe<br />

Probe<br />

temp. Probe<br />

temp. Probe<br />

The temperature The defrost is The defrost in The defrost is<br />

The defrost in<br />

defrost its always possible. temperature it’s always possible.<br />

temperature is<br />

possible only if In the second possible only if On the first circuit<br />

possible only if theDefrost<br />

always both pressure 1 circuit it’s allowed both press.2 and it’s allowed that<br />

pressure probe ofpossible<br />

and 2 probe are that the pressure 1 are not the pressure<br />

the circuit it’s not<br />

not activated. In probe it’s not activated. On the probe is not<br />

activated<br />

the second circuit activated. If first circuit it’s activated. If<br />

is allowed that the press2 is allowed that the press1 is<br />

temperature activated, the temp.probe is not activated the<br />

probe it’s not defrost is done on activated. If defrost is done on<br />

activated. The the lowest of the temp1 is activated the lowest of the<br />

defrost is done on pressures. The the defrost is temperatures.<br />

the lowest of the defrost will always done on the The defrost will<br />

temperatures, if be contemporary lowest of the always be<br />

Not possible defrost Not possible the temp2 is in both circuits. temperatures. contemporary in<br />

defrost<br />

activated. The<br />

The defrost will both circuits.<br />

defrost will<br />

always be<br />

always be<br />

contemporary in<br />

contemporary in<br />

both circuits.<br />

both circuits.<br />

Separated<br />

defrost<br />

Unique<br />

ventilating<br />

section<br />

Separated<br />

ventilating<br />

section<br />

Not possible defrost Not<br />

defrost<br />

Not possible defrost Not<br />

defrost<br />

possible Not<br />

defrost<br />

possible<br />

The defrost in<br />

temperature It’s<br />

possible only if<br />

the pressure 1 is<br />

not activated.<br />

Even the temp.2<br />

probe will be<br />

automatically<br />

activated. Each<br />

circuit defrosts<br />

according to his<br />

own probe.<br />

possible Not<br />

defrost<br />

It’s always<br />

possible. Even<br />

the press2 probe<br />

will be<br />

automatically<br />

activated. Each<br />

circuit defrosts<br />

according to his<br />

own probe.<br />

possible Not<br />

defrost<br />

possible Not<br />

defrost<br />

The defrost in<br />

temperature It’s<br />

possible only if<br />

the press.2 probe<br />

is not activated.<br />

Even the temp.1<br />

probe will be<br />

automatically<br />

activated. Each<br />

circuit defrosts<br />

according to his<br />

own probe.<br />

possible<br />

It’s always<br />

possible. Even<br />

the press1 probe<br />

will be<br />

automatically<br />

activated. Each<br />

circuit defrosts<br />

according to his<br />

own probe.<br />

8.3.1 Contemporary<br />

In the single-circuit case the defrost will be done according to the only temperature/pressure probe.<br />

In the twin-circuit case, if only one probe is present, the defrost of both circuits will be done on that<br />

probe, otherwise, with two probes, the lowest temperature/pressure among the two will always be<br />

controlled.<br />

To start a defrost cycle, the temperature/pressure must keep under the defrost start threshold, with<br />

at least one switch-on compressor in the whole unit, for a cumulative time same at the delay time<br />

of the set-up activation. In both circuits the defrost will always be contemporary activated.<br />

8.3.2 Separated<br />

Each circuit must have his own temperature/pressure probe. Each circuit will do the defrost<br />

separately from each other according to the value of his own temperature/pressure probe. To start<br />

a defrost cycle in a circuit the temperature/pressure must keep under the defrost start threshold,<br />

with at least one switched-on compressor of that circuit, for a cumulative time same at the set-up<br />

activation delay time.<br />

<strong>Rhoss</strong> S.p.A. S.A.T.<br />

Rev. 1.0 20/01/05 30


8.4 Compressors and dripping<br />

The start and the end of a circuit defrost cycle starts with a switch-off of the compressor/s allowing<br />

the refrigerating cycle inversion of still gas. It’s possible set-up a delay time between compressor<br />

and cycle inversion valve for the start phase, and a delay time for the defrost end phase.<br />

Defrost start<br />

DS<br />

CMPS<br />

RV<br />

CMPS<br />

RV<br />

DS<br />

CVDS<br />

T[S]<br />

CVDS CVDS<br />

T[s]<br />

Compressors state<br />

Refrigerating cycle inversion valve<br />

Defrost start process<br />

Defrost start valve compressors delay<br />

Time<br />

During the inversion process of the refrigerating cycle, as was a forcing, the safety timings of the<br />

compressors are ignored.<br />

Defrost end<br />

CMPS<br />

DRIP<br />

DE<br />

RV<br />

CMPS<br />

RV<br />

DE<br />

CVDE<br />

DRIP<br />

T[S]<br />

CVDE CVDE<br />

T[s]<br />

Compressors state<br />

Refrigerating cycle inversion valve<br />

Defrost end process<br />

End defrost valve compressors delay<br />

Dripping process<br />

Time<br />

During the inversion process of the refrigerating cycle, as was a forcing, the safety timings of the<br />

compressors are ignored.<br />

The switch-off period of the compressor after a defrost, is known as dripping process, during this<br />

process the fans can be activated to remove the condensate of the exchanger.<br />

<strong>Rhoss</strong> S.p.A. S.A.T.<br />

Rev. 1.0 20/01/05 31


8.5 Condensing fan<br />

During a defrost cycle the condensation fan/s will be switched-off.<br />

It will be activated during the dripping process, if the process from manufacturer’s opportune<br />

parameter protected from specific password is activated. The switch-off period of a compressor<br />

after a defrost, is known as dripping process.<br />

8.6 Low pressure alarm from pressure<br />

In the whole defrost process, the circuit’s low-pressure alarm<br />

be ignored.<br />

switch<br />

Only at the end of the dripping process (DE point of the previous graphic) the<br />

according to the set-up by-pass times will be activated.<br />

from pressure switch (digital inlet) will<br />

control of the alarm<br />

<strong>Rhoss</strong> S.p.A. S.A.T.<br />

Rev. 1.0 20/01/05 32


9 TIME BENDS<br />

Two types of time bends are possible: setpoint variation and on/off.<br />

It’s possible separately activate 4 daily time bends. For each one there is a mask where the start<br />

hour and the summer and winter setpoint is set up (obviously the end hour is represented by the<br />

start hour of the next time bend)<br />

The o n/off time bend, instead, provides the set-up of:<br />

hour, minutes, of time bend start<br />

hour, minutes, of time bend start<br />

Beg in and end day witch inside of those, for each day, the time bend is done.<br />

The parameters are accessible only by PGD terminal where you can find them in the “clock” menu.<br />

REMARK: If the on-off time bend is activated, the setpoint time bends will be exclusively done if<br />

the unit is on by time bend.<br />

Obviously the time bends will be available only if there is a clock card.<br />

Example:<br />

Setpoint time zone1<br />

Enable:Y Start 8.00<br />

Summer set 12.0°C<br />

Winter<br />

set 40,0°C<br />

Setpoint time zone2<br />

Enable:Y Start 10.00<br />

Summer set 11.0°C<br />

Winter set 42,0°C<br />

Setpoint time zone3<br />

Enable:Y Start 12.00<br />

Summer set 12.0°C<br />

Winter set 40,0°C<br />

Setpoint time zone4<br />

Enable:Y Start 19.00<br />

Summer set 15.0°C<br />

Winter set 45,0°C<br />

ON/OFF time zone:Y<br />

Switch ON 7.00<br />

Switch OFF 18.00<br />

From Mon to Fri<br />

With this set-up, the unit will switch-on everyday from Monday to Friday from 7:00 to 18:00 o’clock.<br />

From 8:00 to 10:00 o’clock the summer set of 12.0°C will be used, from 10:00 to 12:00 o’clock set<br />

= 11.0°C, from 12:00 to 18:00 o’clock (instead of 19:00) set = 15.0°C, after 18:00 switched-off unit<br />

and set = unit set.<br />

<strong>Rhoss</strong> S.p.A. S.A.T.<br />

Rev. 1.0 20/01/05 33


10 HOUR METER<br />

10.1.1 Used parameters<br />

• Compressor 1 working hours threshold<br />

• Compressor 2 working hours threshold<br />

• Compressor 3 working hours threshold<br />

• Compressor 4 working hours threshold<br />

• Working hour threshold of the main circulation pump 1<br />

• Working hour threshold of the main circulation pump 2<br />

• Compressor 1 hour meter zero setting<br />

• Compressor 2 hour meter zero setting<br />

• Compressor 3 hour meter zero setting<br />

• Compressor 4 hour meter zero setting<br />

• Main circulation pump 1 hour meter zero setting<br />

• Main circulation pump 2 hour meter zero setting<br />

10.1.2 Used outlets<br />

• Relay digital outlet of cumulative alarm<br />

10.2 Working description<br />

The counting function of the working hours number of compressors and pumps is provided; that<br />

function will provide at the visualisation of working hours number of each configured device and at<br />

the signalling of an alarm of working reached limit according to a threshold set by maintenance<br />

parameter, protected from specific password, that alarm will be only for visualisation mode and will<br />

not change nothing on the unit working.<br />

The visualisation will be done with the minimum resolution of 1 hour with 0÷999999 limits.<br />

The set-up of the “maintenance alarm” threshold, after reached the hours limit, will have minimum<br />

resolution of 1000 hours with 1000÷999000 limits.<br />

The memorisation of the working hours will happen every hour, so if a black-out after 1h59’59” of<br />

working of the device happens, at the restart of the system the number of visualised working hours<br />

will be 1.<br />

<strong>Rhoss</strong> S.p.A. S.A.T.<br />

Rev. 1.0 20/01/05 34


11 ALARMS<br />

11.1 Reset - Visualisation<br />

The program is able to do a complete check-up of the unit signalling an alarm series, divided in<br />

circuit and system alarms.<br />

The intervention of one of these conditions provides the display visualisation of a specific message<br />

and the activation of a digital outlet.<br />

For some alarms the counting of the interventions in a specific time interval is provided, if that setup<br />

threshold is overtaken, is automatically modified the reset type from automatic to manual.<br />

The reset of the alarms with automatic reset of the alarms involves the cancellation of the display<br />

visualisation and the signalling by digital outlet at the end of the alarm condition.<br />

The reset of the manual reset alarms happens by pressing and releasing the [Alarm] key, after this<br />

operation the display visualisation and the signalling by a digital outlet will be cancelled.<br />

The manual reset involves the block of the related users and requests the intervention of qualified<br />

staff onboard unit for a safe reset of the special condition.<br />

11.2 Alarm log<br />

Being provided alarms with two ways of reset: automatic-manual, a log function that memorises the<br />

interventions of all the happened alarms will be provided, leaving a working track of the unit even<br />

for those automatic reset alarms witch visualisation disappears at the end of the condition.<br />

The log function provides, in the maximum configuration, the use of the date and hour values<br />

calculated by the optional clock card, activated by a manufacturer’s specific parameter, protected<br />

from dedicated password.<br />

At each alarm will be memorised:<br />

• intervention date and hour (if the optional clock is activated and installed)<br />

• total number of memorised events<br />

• code and description of the special event<br />

• the values of the water temperature relieved at the inlet and outlet from the evaporator<br />

• the values of the water temperature relieved at the inlet and outlet from the heat recovery coil<br />

(if the function is enabled)<br />

• working timer with at least a switched-on compressor (expressed in hours and minutes). At the<br />

compressor switch-on of the circuit a minutes timer will be started, that will indicate the<br />

intervention delay of alarm intervention of a device, at the complete switch-off of the<br />

compressors the contactor will be set at zero, waiting next switch-on.<br />

• condensation temperature/pressure of the circuit/ (if the 0÷5 Volt transducer is whether or not<br />

present)<br />

• state of the compressor/s and condensation fan/s right before the alarm event; the<br />

compressors state and the driving 0-100% value of the 0-10V (Comp:XXXX Fan:050%X)<br />

analogic outlet will be visualised<br />

The log of a maximum number of 100 events will be guaranteed (Carel reserves itself to verify<br />

possible memory limits), using a circular list of dates, witch, when a maximum number of<br />

memorisation is reached, the oldest date will be overwritten.<br />

<strong>Rhoss</strong> S.p.A. S.A.T.<br />

Rev. 1.0 20/01/05 35


11.3 Alarms table<br />

<strong>Rhoss</strong> S. p.A. S.A.T.<br />

Rev. 1.0 20/01/05<br />

36


Code Alarm Compressor Fans OFF<br />

Pump Unit OFF Re-set Delay Notes<br />

description s OFF<br />

OFF<br />

012 High pressu re Circ.1 See notes No No <strong>Manual</strong> 0 s After an alarm in chiller mode, if activated, the post-ventilation function will<br />

by circuit 1 compressor/s<br />

be active. In the other cases the fan switch-off of the circuit 1 depends if his<br />

pressure<br />

switch<br />

working is whether or not connected at the compressor’s state (parameter<br />

in “Fan” menu)<br />

013 High pressure Circ. 2 See notes No No <strong>Manual</strong> 0 s<br />

After an alarm in chiller mode, if activated, the post-ventilation function will<br />

by circuit 2 compressors<br />

be active. In the other cases the fan switch-off of the circuit 2 depends if his<br />

pressure<br />

switch<br />

working is whether or not connected at the compressor’s state (parameter<br />

in “Fan” menu)<br />

023 High pressure<br />

Circ.1 See notes No No <strong>Manual</strong> 0 s<br />

After an alarm in chiller mode, if activated, the post-ventilation function will<br />

by circuit 1 compressor/s<br />

be active. In the other cases the fan switch-off of the circuit 1 depends if his<br />

transducer<br />

working is whether or not connected at the compressor’s state (parameter<br />

in “Fan” menu)<br />

024 High pressure Circ.2 See notes<br />

No No <strong>Manual</strong> 0 s<br />

After an alarm in chiller mode, if activated, the post-ventilation function will<br />

by circuit 2 compressors<br />

be active. In the other cases the fan switch-off of the circuit 2 depends if his<br />

transducer<br />

working is whether or not connected at the compressor’s state (parameter<br />

in “Fan” menu)<br />

010 Low pressure Circ.1 If the fans are No No Automatic – <strong>Manual</strong> Settable at the start Must be disabled during all defrost cycle and reactivated according to the<br />

by circuit 1 compressor/s<br />

connected at the<br />

(bound by the of the unit at running delays at the outlet of the same one<br />

pressure<br />

compressor’s state,<br />

number of set-up condition<br />

switch<br />

then, circuit 1 fans<br />

interventions)<br />

off<br />

011 Low pressure Circ.2 If the fans are No No Automatic – <strong>Manual</strong> Settable at the start Must be disabled during all defrost cycle and reactivated according to the<br />

from circuit 2 compressors connected at the<br />

(bound by<br />

the of the unit at running delays at the outlet of the same one<br />

pressure<br />

compressor’ s state,<br />

number of set-up condition<br />

switch<br />

then, circuit 2 fans<br />

interventions)<br />

off<br />

016 Circuit 1 Compressor If the fans are No No Automatic – <strong>Manual</strong> Settable at the start The switch-off of the unit caused by the compressor’s thermal alarm it’s<br />

compressor 1 1 circuit 1 connected at the<br />

(bound by the of the compressor bound at the set up of the working mode of the main circulation pump<br />

thermal<br />

compressor’s state,<br />

number of set-up<br />

(continuous/bound at the thermal request)<br />

protector<br />

then, circ.1 fans off,<br />

interventions)<br />

With switched-off compressor the state of the alarm is ignored(Kriwan)<br />

only if both circ.1<br />

compressors in off<br />

017 Circuit 1 Circuit 1 If the fans are No No Automatic – <strong>Manual</strong> Settable at the start The switch-off of the unit caused by the compressor’s thermal alarm it’s<br />

compressor 2 compressor 2 connected at the<br />

(bound by the of the compressor bound at the set up of the working mode of the main circulation pump<br />

thermal<br />

compressor’s state,<br />

number of set-up<br />

(continuous/bound at the thermal request)<br />

protector<br />

then, circ.1 fans off,<br />

interventions)<br />

With switched-off compressor the state of the alarm is ignored(Kriwan)<br />

only if both circ.1<br />

compressors in off<br />

018 Circuit 2 Circuit 2 If the fans are No No Automatic – <strong>Manual</strong> Settable at the start The switch-off of the unit caused by the compressor’s thermal alarm it’s<br />

compressor 1<br />

thermal<br />

protector<br />

019 Circuit 2<br />

compressor 2<br />

thermal<br />

compressor 1<br />

Circuit 2<br />

compressor 2<br />

connected at the<br />

compressor’s state,<br />

then, circ.2 fans off,<br />

only if both circ.2<br />

compressors in off<br />

If the fans are<br />

connected at the<br />

compressor’s state,<br />

(bound by<br />

number of<br />

interventions)<br />

the<br />

set-up<br />

No No Automatic – <strong>Manual</strong><br />

(bound by the<br />

number of set-up<br />

of the compressor<br />

Settable at the start<br />

of the compressor<br />

bound at the set up of the working mode of the main circulation pump<br />

(continuous/bound at the thermal request)<br />

With switched-off compressor the state of the alarm is ignored(Kriwan)<br />

The switch-off of the unit caused by the compressor’s thermal alarm it’s<br />

bound at the set up of the working mode of the main circulation pump<br />

(continuous/bound at the thermal request)<br />

<strong>Rhoss</strong> S.p.A. S.A.T.<br />

Rev. 1.0 20/01/05 37


Code Alarm Compressor Fans OFF<br />

Pump Unit OFF Re-set Delay Notes<br />

description s OFF<br />

OFF<br />

protector<br />

then, circ.2 fans off,<br />

interventions)<br />

With switched-off compressor the state of the alarm is ignored(Kriwan)<br />

only if both circ.2<br />

compressors in off<br />

020 Condensation Yes Yes 1 and 2 circuit No No Automatic – <strong>Manual</strong> 0 s<br />

fan thermal<br />

(bound by the<br />

protection<br />

number of set-up<br />

interventions)<br />

002 Evaporator Yes Yes Only ON Automatic – <strong>Manual</strong> Settable at t he start<br />

antifreeze<br />

pump (bound by<br />

the of the unit<br />

alarm<br />

number of set-up<br />

interventions)<br />

030 Faulted probe Yes Yes Yes Yes Automatic 60 s<br />

B1<br />

031 Faulted probe Circ.1<br />

Only if connected Only if Only if Automatic<br />

60 s<br />

B2<br />

compressor/s<br />

with 1 circuit connect connecte<br />

ed with d with 1<br />

1 circuit circuit<br />

032 Faulted probe Circ.1<br />

Only if connected Only if Only if Automatic<br />

60 s<br />

B3<br />

compressor/s<br />

with 1 circuit connect connecte<br />

ed with d with 1<br />

1 circuit circuit<br />

033 Faulted probe Circ. 1 Only if connected Only if Only if Automatic 60 s<br />

B4<br />

compressor/s<br />

with 1 circuit connect connecte<br />

ed with d with 1<br />

1 circuit<br />

circuit<br />

034 Faulted probe Circ.2 If the fans are No No Automatic<br />

60 s<br />

B5<br />

compressor/s<br />

connected to the<br />

compres.<br />

state,<br />

then, circ.2 fan off<br />

035 Faulted probe Circ. 1 Only if connected Only if Only if Automatic<br />

60 s<br />

B6<br />

compressor/s with 1 circuit, connect connecte<br />

otherwise if the fans ed with<br />

d with 1<br />

are connected at the 1 circuit circuit<br />

comp ressor state,<br />

then, circ.1 fan off<br />

036 Faulted probe Circ. 2 If t he fans are No No Automatic 60 s<br />

B7<br />

compressor/s connected to the<br />

comp ressors state,<br />

then, circ.2 fan off<br />

037 Faulted probe Circ. 2 If t he fans are No No Automatic 60 s<br />

B8<br />

compressor/s connected to the<br />

compressors state,<br />

then, circ.2 fan off<br />

038 B9 faulted Circ.2 If the fans are No No Automatic 60 s<br />

probe<br />

compressor/s connected to the<br />

compressors state,<br />

then, circ.2 fan off<br />

<strong>Rhoss</strong> S.p.A. S.A.T.<br />

Rev. 1.0 20/01/05 38


Code Alarm Compressor Fans OFF<br />

Pump Unit OFF Re-set Delay Notes<br />

description s OFF<br />

OFF<br />

005 Water flow Yes Yes Yes Automatic – <strong>Manual</strong><br />

Settable at the start The alarm re-set<br />

is bound by a continuous minimum time without<br />

the alarm<br />

( bound<br />

by the of the unit at running<br />

conditions, settable by the mask.<br />

number of set-up<br />

interventions)<br />

045 Discharged No No No No <strong>Manual</strong> Settable<br />

from<br />

the<br />

Must be disabled during all the defrost cycle or the heat recovery if active<br />

unit<br />

start<br />

of<br />

the<br />

compressor<br />

041 Compressor 1 No No No No Automatic 0 s Signalling of maximum reached limit of working hours<br />

maintenance<br />

042 Compressor 2 No No No No Automatic 0 s Signalling of maximum reached limit of working hours<br />

maintenance<br />

043 Compressor 3 No No No No Automatic 0 s Signalling of maximum reached limit of working hours<br />

maintenance<br />

044 Compressor 4 No No No No Automatic 0 s Signalling of maximum reached limit of working hours<br />

maintenance<br />

040 Pump 1 No No No No Automatic 0 s Signalling of maximum reached limit of working hours<br />

maintenance<br />

046 Pump 2 No No No No Automatic 0 s Signalling of maximum reached limit of working hours<br />

maintenance<br />

055 Broken clock No No No No Automatic 0 s Broken or not connected clo ck card. The time bends if actives are disabled<br />

card<br />

056 Processes Yes Yes Yes Yes <strong>Manual</strong><br />

0 s<br />

wrong<br />

sequence<br />

L1 Low Yes Yes Yes Yes Automatic 0 s The alarm re-set is bound by a 5,0 Volt set hysteresis<br />

feeding voltage<br />

L2 Low Yes Yes Yes Yes Automatic 0 s The alarm re-set is bound by a 5,0 Volt set hysteresis<br />

feeding voltage<br />

L3 Low Yes Yes Yes Yes Automatic 0 s The alarm re-set is bound by a 5,0 Volt set hysteresis<br />

057<br />

feeding voltage<br />

L1 Low Yes Yes Yes Yes Automatic<br />

0 s The alarm re-set is bound by a 5,0 Volt set hysteresis<br />

feeding voltage<br />

L2 Low Yes Yes Yes Yes Automatic<br />

0 s The alarm re-set is bound by a 5,0 Volt set hysteresis<br />

feeding voltage<br />

L3 Low Yes Yes Yes Yes Automatic<br />

0 s The alarm re-set is bound by a 5,0 Volt set hysteresis<br />

feeding voltage<br />

021 Faulted pump Yes Yes pompa Yes <strong>Manual</strong><br />

0 s It switches-on after a settable number of followings interventions of the 005<br />

1<br />

1<br />

alarm that means water flow lack<br />

022 Faulted pump Yes Yes pompa Yes <strong>Manual</strong><br />

0 s It switches-on after a settable number of followings interventions of the 005<br />

2<br />

1<br />

alarm that means water flow lack<br />

<strong>Rhoss</strong> S.p.A. S.A.T.<br />

Rev. 1.0 20/01/05 39


11.4 Antifreeze management<br />

11.4.1 Used inlets<br />

• Analogic inlet of the evaporator outlet water temperature<br />

11.4.2 Used parameters<br />

• Antifreeze alarm threshold<br />

• Antifreeze alarm hysteresis<br />

• Offset of the working antifreeze electrical heater<br />

• Antifreeze electrical heater hysteresis<br />

• Antifreeze alarm by-pass time at the unit start<br />

11.4. 3 Used outlets<br />

• Relay digital outlet of the circuit 1 cumulative alarm<br />

• Digital outlet of the evaporator’s antifreeze electrical heater<br />

11.4.4 Working description<br />

FA<br />

AFH<br />

HYSTA_F<br />

OFFS_AFH<br />

HYST_AFH<br />

EOWT [ºC]<br />

THRA_F<br />

THRA_F Antifreeze alarm threshold<br />

HYSTA_F Antifreeze alarm hysteresis<br />

FA Antifreeze alarm<br />

OFFS_AFH Antifreeze electrical heater threshold<br />

HYST_AFH Antifreeze electrical heater hysteresis<br />

AFH Antifreeze electrical heater<br />

EOWT Evaporator water outlet temperature<br />

The control of the antifreeze alarm is based on the temperature of the evaporator’s outlet water; a<br />

working hysteresis and a threshold are set-up: with lower temperature than the set-up threshold, alarm<br />

and switched-off devices will be signalled, turned-off the whole unit, with only the main circulation pump<br />

left on.<br />

The control of the antifreeze electrical heater provides the set-up of a temperature offset instead of a<br />

threshold of antifreeze alarm; that offset can be positive or negative and after added at the threshold of<br />

the antifreeze alarm will set the electrical heater before or after the alarm.<br />

The activation of the electrical heater will be possible only with switched-off unit or after the<br />

temperature’s regulation setpoint is reached; after his reaching the main circulation pump will be<br />

switched-on.<br />

<strong>Rhoss</strong> S.p.A. S.A.T.<br />

Rev. 1.0 20/01/05 40


11.5 Flow alarm management<br />

11.5.1 Used inlets<br />

• Digital inlet of the evaporator’s differential pressure switch<br />

11.5. 2 Used parameters<br />

• Number of maximum following alarms with automatic reset<br />

• By-pass time at the start of the main circulation pump<br />

• By-pass time at running<br />

• Requested time for the reset of the alarm since the pressure switch signals OK flow<br />

11.5. 3 Used outlets<br />

• Relay digital outlet of circuit 1 cumulative alarm<br />

• Digital outlet of the main circulation pump 1<br />

• Digital outlet of the main circulation pump 2<br />

11.5. 4 Working description<br />

From the evaporator side the pressure switch is single. There are provided some settable alarm’s byrun<br />

working. After this the signal of flow lack must be<br />

pass times at the start of the system and in the<br />

always present for a set period, before to put in alarm mode the unit with only one pump, or forcing a<br />

rotation among the pumps on double pump units.<br />

A maximum number of following alarms will be set (for each pump), over those the alarm changes from<br />

automatic to manual reset.<br />

When the unit has just one pump, in case of automatic reset alarm, the main circulation pump keeps<br />

running, if there are two pumps will be forced if possible a rotation among these, and in this case, the<br />

flow alarm will be signalled only after both pumps are damaged. With manual reset of the flow alarm the<br />

unit is completely switched-off.<br />

11.6 Signalling of discharged unit<br />

11.6.1 Used inlets<br />

• Evaporator’s inlet water temperature analogic inlet<br />

• Evaporator’s outlet water temperature analogic inlet<br />

11.6.2 Used parameters<br />

• E vaporator’s inlet-outlet water temperature delta<br />

• Alarm’s by-pass time<br />

• Discharged unit ala rm control activation<br />

11.6.3 Used outlets<br />

• Relay digital outlet of circuit 1 cumulative alarm<br />

11.6.4 Working description<br />

Necessary conditions to activate the alarm:<br />

- If the manufacturer parameter control, protected from specific password is activated;<br />

- If the evaporator’s inlet and outlet temperature probes are activated;<br />

- If a recovery or defrost cycle is running;<br />

- If the unit is ON;<br />

- If the pump is working;<br />

- If all the compressors are switched-on and at maximum power (unit at 100% of the refrigerating<br />

power)<br />

The water temperature values relieved from the probes fixed in the evaporator’s inlet and outlet are<br />

monitored; in the case when the difference (in absolute value) between<br />

the two temperatures is lower<br />

<strong>Rhoss</strong> S.p.A. S.A.T.<br />

Rev. 1.0 20/01/05 41


than the set delta, if the control by opportune manufacturer’s parameter protected from specific<br />

password is activated, after the set delay, the alarm will be signalled.<br />

11.7 Phases control management<br />

11.7.1 Used inlets<br />

• Three-phase card for phase sequence control and voltage measure<br />

11.7.2 Used parameters<br />

• Feed nominal voltage<br />

• Type of feed<br />

• Phase monitor alarm activation (both tension min/max alarms and wrong phase sequence)<br />

• Network frequency<br />

• Minimum voltage treshold<br />

• Maximum voltage threshold<br />

11.7.3 Used outlets<br />

• Relay digital outlet of cumulative alarm<br />

11.7.4 Working description<br />

The pCO1OEM onboard card installation of a phase monitor card and phase wideness measure is<br />

provided, according to that the direct verify of the right link of the unit and the probable anomaly<br />

absorption of the phases is possible.<br />

The pCO OEM controller will be able to monitor the exact phases system in the three-phase systems,<br />

and if this is not correct, it will signal it by a manual reset alarm with following switch-off of all the linked<br />

loads.<br />

That alarm can be disabled by a special parameter protected from specific password, visible/adjustable<br />

from PGD interface.<br />

Ass well as the correct sequence control of the phases it provides at the control of the wideness<br />

according to two set minimum and maximum thresholds.<br />

According to the type of used feed system, the program will be able to decide if it’s whether or not the<br />

case to feed the measured F-N o F-F voltage (neutral-phase or phase-phase), the following table reports<br />

the provided correspondences:<br />

Type of Voltage Type of voltage<br />

distribution<br />

measurement<br />

1 F + N 230 V F-N<br />

3 F + N 400 V F-F<br />

3 F 230 V F-F<br />

From the table results that in three-phase systems the indications of phase-phase voltage will be always<br />

supplied.<br />

To indicate the type of used distributions, a set-up parameter that indicates the provided phases number<br />

and if it’s whether or not present the neutral will be introduced; that parameter will be protected from<br />

specific manufacturer’s password and visible/adjustable by PGD user’s interface.<br />

From the installed unit values is possible to determine the working voltage threshold over those the unit<br />

working is not guaranteed; will be then introduced a set-up parameter of the system’s nominal voltage.<br />

That value protected from manufacturer’s password is visible by PGD user’s interface will allow the<br />

preventive definition of the thresholds of minimum and maximum working voltage.<br />

Normally the tolerance is + 10%, on the basis of that values, as soon as the voltage value of nominal<br />

feed is set-up, the program will do a rapid calculation, automatically setting the thresholds of the width’s<br />

maximum and minimum alarm of the phases.<br />

If adjust those values for particular unit requirements is necessary, will be possible enter at the<br />

opportune parameters, protected from manufacturer’s password.<br />

<strong>Rhoss</strong> S.p.A. S.A.T.<br />

Rev. 1.0 20/01/05 42


The overtaking of the width’s minimum and maximum thresholds of the phases will imply a distinct alarm<br />

signalling, but single code (A57 alarm), with following switch-off of the unit and all the connected loads.<br />

That alarm will be an automatic reset type with automatic reset of the working as soon as the normal<br />

working conditions are restarted.<br />

To guarantee a certain stability to the system will be introduced a 5,0 Volt fixed hysteresis to the alarm’s<br />

reset of minimum and maximum voltage, in that way not correct working due to oscillations of the value<br />

within very narrow range.<br />

At the card’s switch-on, to allow the correct update of the values, read from the phase monitoring card, is<br />

introduced a set delay of 60 seconds. In this gap the visualised values must not be considered reliable<br />

and the alarms of minimum and maximum voltage are disabled, while the alarm of wrong phase<br />

sequence is always active.<br />

<strong>Rhoss</strong> S.p.A. S.A.T.<br />

Rev. 1.0 20/01/05 43


12 TERMINAL AND PARAMETERS<br />

12.1 Self-configuration of the terminals<br />

It’s provided a self-configuration of the terminals. At each switch-on the pCO-OEM will be configured to<br />

communicate with the terminal set out at 32.<br />

12.2 PGD Layout<br />

In the following drawing a layout of the PGD terminal used for the <strong>Rhoss</strong>’s remote user interface.<br />

ALARM<br />

PRG<br />

GREEN<br />

BACKLIGHTED 4x20<br />

DISPLAY<br />

MODE<br />

ON<br />

OFF<br />

12.2.1 LED signalling<br />

• Alarm Led (red alarm key<br />

backlighting)<br />

If switched-on indicates the presence of at least one active alarm<br />

• Prg<br />

Led (orange PRG<br />

key backlighting)<br />

If switched-on indicates that you are browsing in the parameter’s set-up masks<br />

• On-Off Led (Green On-Off key backlighting)<br />

Switched-on if the display backlighting is active, as soon as any key is pressed<br />

• Up Led (Green up key<br />

backlighting)<br />

Switched-on if the display backlighting is active, as soon as any key is pressed<br />

• Down<br />

Led (Green down key backlighting)<br />

Switched-on if the display backlighting is active, as soon as any key is pressed<br />

• Mode-Enter Led (Green Mode-Enter key backlighting)<br />

Switched-on if the display backlighting is active, as soon as any key is pressed<br />

The display backlighting will be managed, driving the automatic switch-off of it, after about 30 seconds<br />

with the keyboard not working.<br />

12.2.2 Use of the keys<br />

[Alarm] key<br />

If at least one alarm condition is present allows the access to the alarm’s masks group.<br />

The second pressing from a mask alarm allows the reset of every active alarm and the visualisation of<br />

message deleting.<br />

[Prg] key<br />

If pressed for 5 following seconds from the main mask of the software allows the access to the sliding<br />

menus for the selection of the parameter’s class to change.<br />

[On / Off] key<br />

If the unit is switched-off it allows to switch it on s tarting up the start processes of the main circulation<br />

pump and the activation<br />

of the thermostatic regulation.<br />

If the unit is switched-on it allows to switch it off starting up every switch-off processes of the controlled<br />

devices and the main circulation pump.<br />

[Up] key<br />

Allows the scrolling among the masks of the sam e group.<br />

<strong>Rhoss</strong> S.p.A. S.A.T.<br />

Rev. 1.0 20/01/05 44


If the slider is positioned in the high left corner of a configuration mask allows the passage to the<br />

previous mask.<br />

If the mask related to a particular active alarm is visualised, allows the passage of the eventual previous<br />

code of active alarm.<br />

If the slider is positioned on a set-up range of a parameter allows the increasing of the visualised value.<br />

[Mode - Enter ] key<br />

If the main mask of the software is visualised, where<br />

the unit sta te and readings of the main probes are<br />

indicated, allows the cyclic selection of the unit working mode, c hanging from summer mod e (cold water<br />

production) to winter mode (hot water production) and vice versa.<br />

In the visualisation and adjusting masks of the parameters does the function of moving among the set<br />

fields and confirmation of the selectioned values.<br />

[Down] key<br />

Allows the scrolling among the masks of the same group.<br />

If the slider is positioned in the high left corner of a configuration mask allows the passage to the<br />

previous mask.<br />

If the mask related to a particular active alarm is visualised, allows the passage of the eventual previous<br />

code of active alarm.<br />

If the slider is positioned on a set-up range of a parameter allows the increasing of the visualised value.<br />

12.3 Definition of the access password<br />

to the pr otected branches<br />

Each set-up parameter is integrated in an appropriate group of masks (depending from the safety level<br />

attributed to the self-parameter) protected from password.<br />

The passwords will be different according to the following correspondences:<br />

Masks group<br />

Password<br />

Manufacturer 0228<br />

User 0077<br />

Manufacturer: approaches to the hardware configuration masks of the system and of set-up of basic<br />

parameters for the working like safety delay times, alarm thresholds and activation delays.<br />

User: approaches to the visualisation’s masks of the dates useful to the user, like regulation band,<br />

antifreeze offset et…<br />

12.4 Set-up parameters list<br />

PGD description<br />

Parameter<br />

description<br />

Configuration Menu<br />

Config.unit Unit type CH+HP<br />

Default Limits Unit of<br />

measur<br />

ement<br />

CH<br />

---<br />

CH+HP<br />

Total comps nr. Number of total 4 1-2-4 ---<br />

installed compressors<br />

Circuit nr. Number of circuits 2 1-2 ---<br />

Fans group nr. Number of ventilation 1 1-2 ---<br />

groups<br />

En. second pump Activation of second N Y/N ---<br />

pump circulation<br />

En.compr.rotat. Activation of Y Y/N ---<br />

compressors rotation<br />

En.layer device Activation of Y<br />

Y/N<br />

compressor’s<br />

equalised switch-on<br />

Phases nr. cfg Set-up of feed type 3ph+N 3ph+N ---<br />

<strong>Rhoss</strong> S.p.A. S.A.T.<br />

Rev. 1.0 20/01/05 45


PGD description Parameter<br />

description<br />

Default Limits Unit of<br />

measur<br />

ement<br />

1ph+N<br />

3ph<br />

En phases alarm Activation of<br />

alarms<br />

phases Y Y/N ---<br />

Voltage Set-up of nominal feed 400 0-450 V<br />

voltage<br />

Frequency Feed nominal 50 50-60 Hz<br />

frequency selection<br />

Supply voltage alarm Set-up of minimum 360 0-[Voltage] V<br />

min threshold voltage alarm<br />

threshold<br />

Supply voltage alarm Set-up of maximum 440 [Voltage]-450 V<br />

max threshold voltage alarm<br />

threshold<br />

Voltage Offset L1 Line 1 voltage 0 -99 / 99 V<br />

adjustment<br />

Voltage Offset L2 Line 2 voltage 0 -99 / 99 V<br />

adjustment<br />

Voltage Offset L3 Line 3 voltage 0 -99 / 99 V<br />

adjustment<br />

Setpoint<br />

Setpoint<br />

N Y/N ---<br />

compensation enable compensation<br />

summer<br />

activation in summer<br />

working<br />

Setpoint<br />

Setpoint<br />

N Y/N ---<br />

compensation enable compensation<br />

winter<br />

activation in winter<br />

working<br />

Input probe enable B1 Analogic inlet reading Y Y/N ---<br />

activation 1<br />

Input probe enable B2 Analogic inlet reading Y Y/N ---<br />

activation 2<br />

Input probe enable B3 Analogic inlet reading N Y/N ---<br />

activation 3<br />

Input probe enable B4 Analogic inlet reading N Y/N ---<br />

activation 4<br />

Input probe enable B5 Analogic inlet reading N Y/N ---<br />

activation 5<br />

Input probe enable B7 Analogic inlet reading N Y/N ---<br />

activation 6<br />

Input probe enable B8 Analogic inlet reading N Y/N ---<br />

activation 7<br />

Inputs probes offset Analogic inlet 0.0 -9.9-9.9 ---<br />

B1<br />

calibration 1<br />

Inputs probes offset Analogic inlet 0.0 -9.9-9.9 ---<br />

B2<br />

calibration 2<br />

Inputs probes offset Analogic inlet 0.0 -9.9-9.9 ---<br />

B3<br />

calibration 3<br />

Inputs probes offset Analogic inlet 0.0 -9.9-9.9 ---<br />

B4<br />

calibration 4<br />

Inputs probes offset Analogic<br />

inlet 0.0 -9.9-9.9 ---<br />

<strong>Rhoss</strong> S.p.A. S.A.T.<br />

Rev. 1.0 20/01/05 46


PGD description<br />

Parameter<br />

description<br />

Default Limits Unit of<br />

measur<br />

ement<br />

B5 calibration 5<br />

Inputs probes offset Analogic inlet 0.0 -9.9-9.9 ---<br />

B6<br />

calibration 6<br />

Inputs probes offset Analogic inlet 0.0 -9.9-9.9 ---<br />

B7<br />

calibration 7<br />

Inputs probes offset Analogic inlet 0.0 -9.9-9.9 ---<br />

B8<br />

calibration 8<br />

Inputs probes offset Analogic inlet 0.0 -9.9-9.9 ---<br />

B9<br />

calibration 9<br />

Pressure probe range Set-up of the 0-5 volt 0.0 -50.0-50.0 bar<br />

0V<br />

inlet full scale<br />

minimum limit<br />

Pressure probe range Set-up of the 0-5 volt 34.0 -50.0-50.0<br />

bar<br />

5V<br />

inlet full scale<br />

maximum limit<br />

Digital inputs logic Digital inlet logic setup<br />

NC NC/NO ---<br />

pCO1OEM 2<br />

2<br />

Digital inputs logic Digital inlet logic setup<br />

NC NC/NO ---<br />

pCO1OEM 3<br />

3<br />

Digital inputs logic Digital inlet logic setup<br />

NC NC/ NO<br />

---<br />

pCO1OEM 4<br />

4<br />

Digital inputs logic Digital inlet logic setup<br />

NC NC/NO ---<br />

pCO1OEM 5<br />

5<br />

Digital inputs logic Digital inlet logic setup<br />

NC<br />

NC/NO<br />

---<br />

pCO1OEM 6<br />

6<br />

Digital inputs logic Digital inlet logic setup<br />

NO<br />

NC/NO ---<br />

pCO1OEM 7<br />

7<br />

Digital inputs logic Digital inlet logic setup<br />

NC NC/NO<br />

---<br />

pCO1OEM 8<br />

8<br />

Digital inputs logic Digital inlet logic set- NC NC/NO ---<br />

pCO1OEM 10 up 10<br />

Digital inputs logic Digital inlet logic setup<br />

NC<br />

NC/NO ---<br />

pCO1OEM 11<br />

11<br />

Digital inputs logic Digital inlet logic set- NC NC/NO ---<br />

pCO1OEM 12 up 12<br />

Digital output logic Digital outlet logic set- NO NO/NC ---<br />

pCO1OEM 1<br />

up 1<br />

Digital output logic Digital outlet logic setup<br />

NO NO/NC ---<br />

pCO1OEM 2<br />

2<br />

Digital output logic Digital outlet logic setup<br />

NO NO/NC ---<br />

pCO1OEM 3<br />

3<br />

Digital output logic Digital outlet logic setup<br />

NO NO/NC ---<br />

pCO1OEM 4<br />

4<br />

Digital output logic Digital outlet logic setup<br />

NO NO/NC<br />

---<br />

pCO1OEM 5<br />

5<br />

Digital output logic Digital outlet logic setup<br />

NO NO/NC ---<br />

pCO1OEM 6<br />

6<br />

Digital output logic Digital outlet logic set- NC NO/NC ---<br />

pCO1OEM 7 up 7<br />

Digital output logic Digital outlet logic set- NO NO/NC ---<br />

pCO1OEM 8 up 8<br />

<strong>Rhoss</strong> S.p.A. S.A.T.<br />

Rev. 1.0 20/01/05 47


PGD description Parameter<br />

description<br />

Default Limits Unit of<br />

measur<br />

ement<br />

Digital output logic Digital outlet logic set- NO NO/NC ---<br />

pCO1OEM 9<br />

up 9<br />

Digital output logic Digital outlet logic setup<br />

NO<br />

NO/NC<br />

---<br />

pCO1OEM 10<br />

10<br />

Digital output logic Digital outlet logic setup<br />

NO NO/NC ---<br />

pCO1OEM 11<br />

11<br />

Digital output logic Digital outlet logic setup<br />

NC NO/NC ---<br />

pCO1OEM 12<br />

12<br />

Supervisory system Serial communication RS485<br />

RS485 ---<br />

protocol type<br />

protocol selection<br />

RS232<br />

Modbus<br />

LonMark<br />

Supervisory system Communication speed 19200(RS485) 1200<br />

bps<br />

speed set-up to supervisor 2400<br />

4800<br />

9600(RS485)<br />

19200(RS485)<br />

Supervisory system Serial identification 1 1-200 ---<br />

identificat.Nr. address set-up<br />

FLRHSMCHIO V. Software version ---<br />

--- ---<br />

visualisation<br />

Please insert unlock Beta versions unlock 0 -32767/32767 ---<br />

code<br />

code<br />

Reset all parameters Start of the memory --- Y/N ---<br />

to default values delete process and<br />

default installation<br />

values<br />

Erase log Start of the alarm log --- Y/N ---<br />

memory delete<br />

process<br />

Insert another Adjust of the 228 0-9999 ---<br />

manufacturer parameters access<br />

password<br />

password<br />

Pump menu<br />

Main pump ON if Main pump working Unit ON Unit ON<br />

mode set-up<br />

Compressor ON<br />

Main pump switching Delay set-up at the 15 0-999 s<br />

off delay time main pump switch-off<br />

Time between main Devices activation 15<br />

0-999 s<br />

pump and delay set-up from the<br />

compressors start start of the main pump<br />

Pumps rotation time Rotation time among 999 0-999 H<br />

the pumps<br />

Test rotation<br />

Activation at the pump N N-Y ---<br />

rotation<br />

Test rotat.time Test<br />

times<br />

pumps rotation 1 0-999 m<br />

Pumps mode Pumps working mode Auto Auto – Only P1 – Only ---<br />

P2<br />

Compressor menu<br />

Minimum compressor Compressor working 60 0-9999 s<br />

<strong>Rhoss</strong> S.p.A. S.A.T.<br />

Rev. 1.0 20/01/05 48


PGD description<br />

power-on time<br />

Minimum compressor<br />

power-off time<br />

Min time betw. diff.<br />

comp start<br />

Min time betw. same<br />

comp. start<br />

Fan menu<br />

Enable condenser fan<br />

pre-ventilation<br />

Enable force cond. fan<br />

by HP alarm<br />

Condenser fan lag<br />

compressor<br />

Local condensation<br />

summer setpoint<br />

Local condensation<br />

summer diff.<br />

Local condensation<br />

winter setpoint<br />

Local condensation<br />

winter diff.<br />

Parameter<br />

description<br />

Default Limits Unit of<br />

measur<br />

ement<br />

minimum time<br />

Set-up of the 180 0-9999 s<br />

compressor switch-off<br />

minimum time<br />

Set-up of the minimum 0 0-9999 s<br />

time among different<br />

compressors starting<br />

times<br />

Set-up of the minimum 360 0-9999 s<br />

time among starting<br />

times of the same<br />

compressor<br />

Condenser preventilation<br />

activation<br />

Condensation fans<br />

forcing activation for<br />

high pressure alarm<br />

Fan working activation<br />

connected to the<br />

compressor working<br />

state<br />

Set-up of the summer<br />

condensation<br />

regulation setpoint<br />

Set-up of the summer<br />

condensation<br />

regulation band<br />

Set-up of the winter<br />

condensation<br />

regulation setpoint<br />

Set-up of the winter<br />

condensation<br />

regulation band<br />

Condenser fan max Set up of the<br />

speed condensation fan<br />

maximum speed<br />

Condenser fan min Set up of the<br />

speed<br />

condensation fan<br />

minimum speed<br />

Condenser fan cut off Set-up of the<br />

condensation fan cutoff<br />

hysteresis<br />

Condenser fan speedup<br />

time<br />

Working time set-up at<br />

maximum speed at the<br />

start<br />

Y Y/N ---<br />

Y Y/N ---<br />

Y Y/N ---<br />

14.0 -999.9-999.9<br />

bar<br />

6.0 0.0-999.9 bar<br />

7.0 -999.9-999.9 bar<br />

3.0 0.0-999.9 bar<br />

10.0 0.0-10.0 V<br />

3.0 0.0-10.0<br />

V<br />

0.5 0.0-10.0 bar<br />

1 0-999 s<br />

Condenser fan in Fan working activation N Y/N ---<br />

dripping mode enable in dripping mode<br />

Condenser fan in Fan speed in dripping 100 0-100 %<br />

dripping mode speed mode<br />

Enable high press. High pressure pre- N Y/N ---<br />

<strong>Rhoss</strong> S.p.A. S.A.T.<br />

Rev. 1.0 20/01/05 49


PGD description<br />

Parameter<br />

description<br />

prevent in normal alarm activation in<br />

normal working<br />

Setpoint Set-up of high<br />

condensation pressure<br />

pre-alarm setpoint<br />

Diff. Set-up of high<br />

condensation pressure<br />

pre-alarm hysteresis<br />

Default Limits Unit of<br />

measur<br />

ement<br />

26.0 -99.9-99.9 bar<br />

6.0 0.0-99. 9 bar<br />

Setpoint Set-ucondensation pressure<br />

of high 60.0 -999.9-999.9 °C<br />

pre-alarm setpoint<br />

Diff. Set-up of high 10.0<br />

0.0-999.9 °C<br />

condensation<br />

temperature pre-alarm<br />

hysteresis<br />

Enable high High pressure pre- N Y/N ---<br />

press.prevent in alarm activation in<br />

defrost<br />

defrost mode<br />

Setpoint<br />

Set-up of high 25.0<br />

-99.9-99.9 bar<br />

condensation pressure<br />

pre-alarm setpoint in<br />

defrost mode<br />

Diff.<br />

Set-up of high 5.0<br />

0.0-99.9 bar<br />

condensation pressure<br />

pre-alarm hysteresis in<br />

defrost mode<br />

Setpoint<br />

Set-up of high 55.0 -999.9-999.9 °C<br />

condensation<br />

temperature prealarm<br />

setpoint in<br />

defrost mode<br />

Diff Set-up of the high 10.0 0.0-999.9 °C<br />

condensation<br />

temperature pre-alarm<br />

hysteresis in defrost<br />

mode<br />

Alarm menu<br />

Enable high press.<br />

probe alarm<br />

High pressure alarm N Y/N ---<br />

activation by<br />

transducer<br />

Setpoint Set-up of the high 27.0 -.0-99.9 bar<br />

pressure alarm<br />

setpoint by transducer<br />

Diff. High pressure alarm 7.0 0.0-99.9 bar<br />

hysteresis set-up by<br />

transducer<br />

Time by-pass freeze Antifreeze alarm delay 15 0-999 s<br />

alarm from start pump time from the main<br />

pump start-up<br />

Evaporat.flow alarm Evaporator flow alarm 15 0-999 s<br />

start-up delay delay time at the pump<br />

start-up<br />

<strong>Rhoss</strong> S.p.A. S.A.T.<br />

Rev. 1.0 20/01/05 50


PGD description<br />

Parameter<br />

description<br />

Default Limits Unit of<br />

measur<br />

ement<br />

15 0-999 s<br />

Evaporat.flow alarm Evaporator flow alarm<br />

run delay<br />

delay time at running<br />

Evaporat.flow alarm Evaporator flow alarm 15 0-999 s<br />

reset delay<br />

automatic reset delay<br />

time<br />

Delay overload Compressor thermal 5 0-999 s<br />

comp.alarm from start<br />

alarm delay time from<br />

compressor<br />

the compressor startup<br />

Num.retry<br />

Set-up of the 3 0-9 ---<br />

evap.flow/pump evaporator damaged<br />

damage alarm flow/pump alarm<br />

repeating number<br />

Num.alarm per hour Set-up of the 0 0-9 ---<br />

freeze<br />

antifreeze alarm<br />

repeating number<br />

Num.alarm per hour Set-up of the 0 0-9 ---<br />

overload comp. compressor thermal<br />

alarm repeating<br />

number<br />

Num.alarm per hour Set-up of the 0 0-9 ---<br />

overl.cond.fan condensation fan<br />

thermal alarm<br />

repeating number<br />

Num.alarm per hour Set-up of the low 3 0-9<br />

---<br />

low pressure pressure alarm<br />

repeating number<br />

Defrost menu<br />

Defrost type Type of defrost Simultaneous Simultaneous/Separated ---<br />

Defrost parameters by Set-up of the defrost 2.9 -99.9 -99.9<br />

bar<br />

pressure start activation threshold by<br />

pressure<br />

Defrost parameters by Set-up of defrost end 18.0<br />

-99.9-99.9 bar<br />

pressure stop threshold by pressure<br />

Defrost parameters by Set-up of defrost -2.0<br />

-99.9-99.9 °C<br />

temperature start activation threshold by<br />

temperature<br />

Defrost parameters by Set-up of defrost end 21.0 -99.9-99.9 °C<br />

temperature stop threshold<br />

by<br />

temperature<br />

Defrost parameters Delay time at the 2400 0-32000 s<br />

delay time<br />

defrost activation<br />

Defrost parameters Defrost last maximum 600 0-32000 s<br />

maximum time time<br />

Time between two Delay time between 0 0-500 m<br />

defrost<br />

two following defrost<br />

cycles<br />

Defrost parameters Compressors switchoff<br />

5 0-999 s<br />

forcing time at the<br />

force compressor off<br />

when defrost begin inlet of a defrost<br />

Defrost parameters Compressors switch- 5 0-999 s<br />

<strong>Rhoss</strong> S.p.A. S.A.T.<br />

Rev. 1.0 20/01/05 51


PGD description<br />

Parameter<br />

description<br />

Default Limits Unit of<br />

measur<br />

ement<br />

force off compressor off forcing time at the<br />

when defrost end outlet of a defrost<br />

Defrost config. Activation at the Y Y/N ---<br />

comp.timing reset compressors timings<br />

during defrost reset during a defrost<br />

Hours menu<br />

Hour meter Pump1 Main pump work hours --- ---- h<br />

visualisation<br />

Hour meter Pump2 Main pump work hours --- ---- h<br />

visualisation<br />

Hour meters circuit 1 Compres.1 circulat.1 --- ---- h<br />

compressor 1 work<br />

hours<br />

visualisation<br />

Hour meters circuit 1 Compres.2 circulat.1 --- ---- h<br />

compressor 2 work<br />

visualisation<br />

hours<br />

Hour meters circuit 2 Comp.1 circ.2 work --- ---- h<br />

compressor 1 hours visualisation<br />

Hour meters circuit 2 Comp.2 circ.2 work --- ---- h<br />

compressor 2 hours visualisation<br />

Main pump 1 hour Set-up of the main 5 0-999 h x1000<br />

meter threshold pump 1 maintenance<br />

alarm threshold<br />

Main pump 1 hour Reset of the main<br />

--- Y/N ---<br />

meter req. reset pump 1 working hour<br />

meter<br />

Main pump 2 hour Set-up of the main 5 0-999 h x1000<br />

meter threshold pump 2 maintenance<br />

alarm threshold<br />

Main pump 2 hour Reset of the main --- Y/N ---<br />

meter req. reset pump 2 working hour<br />

meter<br />

Compressor1 circuit1 Set-up of the 3 0-999 h x1000<br />

hour meter threshold compressor 1 circuit 1<br />

maintenance alarm<br />

threshold<br />

Compressor1 circuit1 Reset of the --- Y/N ---<br />

hour meter req. reset compressor 1 circuit 1<br />

working hour meter<br />

Compressor2 circuit1 Set-up of the 3 0-999 h x1000<br />

hour meter threshold compressor 2 circuit 1<br />

maintenance alarm<br />

threshold<br />

Compressor2 circuit1 Reset of the --- Y/N ---<br />

hour meter req. reset compressor 2 circuit 1<br />

working hour meter<br />

Compressor1 circuit2 Set-up of the 3 0-999 h x1000<br />

hour meter threshold compressor 2 circuit 2<br />

maintenance alarm<br />

threshold<br />

Compressor1 circuit2 Reset of the --- Y/N ---<br />

<strong>Rhoss</strong> S.p.A. S.A.T.<br />

Rev. 1.0 20/01/05 52


PGD description<br />

Parameter<br />

description<br />

hour meter req. reset compressor 1 circuit 2<br />

working hour meter<br />

Compressor2 circuit2 Set-up of the<br />

hour meter threshold compressor 2 circuit 2<br />

maintenance alarm<br />

threshold<br />

Compressor2 circuit2 Reset of the<br />

hour meter req. reset compressor 2 circuit 2<br />

working hour meter<br />

Compressors enable Compressor 1<br />

Circuito1 C1<br />

activation<br />

Compressors enable Compressor 2<br />

Circuito1 C2<br />

activation<br />

Compr<br />

Default Limits Unit of<br />

measur<br />

ement<br />

3 0-999 h x1000<br />

--- Y/N ---<br />

Y Y/N ---<br />

Y Y/N ---<br />

Compressors enable essor 1 Y Y/N ---<br />

Circuito2 C1<br />

activation<br />

Compressors enable Compressor 2 Y<br />

Y/N ---<br />

Circuito2 C2<br />

activation<br />

Setpoints menu<br />

Summer setpoint Set-up of the summer 12.0<br />

Summer temperature °C<br />

regulation setpoint<br />

setpoint limits low /<br />

Summer temperature<br />

setpoint limits high<br />

Winter setpoint Set-up of the winter 40.0 Winter temperature °C<br />

regulation setpoint<br />

setpoint limits low /<br />

Winter temperature<br />

setpoint limits high<br />

User menu<br />

Temperature band Set-up of the 2.0 0.0-99.9 °C<br />

temperature regulation<br />

band<br />

Winter temperature Set-up of the winter 25. 0 -99.9 -99.9<br />

°C<br />

setpoint limits low setpoint lower limit<br />

Winter temperature Set-up of the winter 48.0 -99.9-99.9 °C<br />

setpoint limits high setpoint higher limit<br />

Summer temperature Set-up of the summer -5.0 -99.9-99.9 °C<br />

setpoint limits low setpoint lower limit<br />

Summer temperature Set-up of the summer 25.0 -99.9-99.9 °C<br />

setpoint limits high setpoint higher limit<br />

Summer setpoint Set-up of the setpoint 0.0<br />

-99.9-99.9 °C<br />

compensation setpoint for summer regulation<br />

setpoint compensation<br />

Summer setpoint Set-up of the summer 0.0 0.0-99.9<br />

°C<br />

compensation delta setpoint compensation<br />

Summer setpoint Set-up of the summer 0.0 0.0-99.9 °C<br />

compensation offset setpoint compensation<br />

offset<br />

Winter setpoint Set-up of the setpoint 0.0<br />

-99.9-99.9 °C<br />

compensation setpoint for winter regulation<br />

setpoint compensation<br />

Winter setpoint Set-up of the winter 0.0 0.0-99.9 °C<br />

compensation delta setpoint compensation<br />

<strong>Rhoss</strong> S.p.A. S.A.T.<br />

Rev. 1.0 20/01/05 53


PGD description<br />

Parameter<br />

description<br />

Default Limits Unit of<br />

measur<br />

ement<br />

delta<br />

Winter setpoint Set-up of the winter 0.0 0.0-99.9<br />

°C<br />

compensation offset setpoint compensation<br />

offset<br />

Enable remote on-off On-Off activation by N Y/N ---<br />

by supervisory supervisory<br />

Enable summer/winter Summer/winter<br />

N Y/N ---<br />

by supervisory<br />

activation by<br />

supervisory<br />

Time condenser fan Pre-ventilation time 30 0-999 s<br />

pre-ventilation<br />

Time post-ventila. Post-ventilation alarm 60 0-999 s<br />

after HP alarm after high pressure<br />

alarm<br />

Antifreeze heater Set-up of the 1.0 0.0-99 .9<br />

°C<br />

offset<br />

antifreeze heater<br />

offset set-up<br />

Antifreeze heater hyst. Set-up of the 1.0 0.0-99 .9<br />

°C<br />

antifreeze heater<br />

hysteresis<br />

Antifreeze alarm Set-up of the 3.0 -99.9-99.9 °C<br />

setpoint<br />

antifreeze alarm<br />

setpoint<br />

Antifreeze alarm hyst. Set-up of the 2.0 0.0-99.9 °C<br />

antifreeze alarm<br />

hysteresis<br />

Low pressure alarm Low pressure alarm 120 0-999 s<br />

start-up delay start-up delay time<br />

Low pressure alarm Low pressure alarm 15 0-999 s<br />

run delay<br />

run delay time<br />

Enable discharge unit Discharged unit alarm N Y/N ---<br />

alarm<br />

activation<br />

Delta In/Out Set-up of the 10.0 0.0-50.0 °C<br />

temperature delta for<br />

discharged unit alarm<br />

Delay alarm<br />

Insert another<br />

maintenance<br />

password<br />

Rem.Summer/Winter<br />

Enable summer/winter<br />

remote control<br />

Condensing control<br />

Enable press. Probe<br />

Circuit 1<br />

Discharged unit alarm<br />

delay time<br />

Adjust of the<br />

parameters access<br />

password<br />

It enables the<br />

summer/winter remote<br />

inlet<br />

180 0-9999<br />

s<br />

77 0-9999<br />

---<br />

N N/Y ---<br />

Activation of the 0-5 N Y/N ---<br />

Volt pressure<br />

transducer control for<br />

circuit 1 condensation<br />

control<br />

Enable press. Probe Activation of the 0-5 N Y/N ---<br />

<strong>Rhoss</strong> S.p.A. S.A.T.<br />

Rev. 1.0 20/01/05 54


PGD description<br />

Parameter<br />

description<br />

Circuit 2 Volt pressure<br />

transducer control for<br />

circuit 2 condensation<br />

control<br />

Ventil.type Set-up of the<br />

ventilation type<br />

Default Limits Unit of<br />

measur<br />

ement<br />

Proport.<br />

On-Off / Proport. ---<br />

Clock<br />

Enable 32KB clock Enabling of the clock N N/Y ---<br />

board<br />

card management<br />

Clock config. time Hour set-up --- 0-23 ---<br />

Clock config. time Minutes set-up --- 0-59 ---<br />

Clock config. date Day set-up --- 1-31 ---<br />

Clock config. date Month set-up --- 1-12 ---<br />

Clock config. date Year set-up --- 0-99 ---<br />

Enable time bend 1 Enabling of the N N/Y ---<br />

setpoint<br />

setpoint time bends 1<br />

Setpoint time bend 1 Setpoint time bend 1 0 0-23 Hours<br />

start<br />

start hour<br />

Setpoint time bend 1 Setpoint time bend 1 0 0-59 Minutes<br />

start<br />

start minutes<br />

Setpoint time bend 1 Time bend 1 summer 0 0 - 999 °C<br />

summer set<br />

setpoint<br />

Setpoint time bend 1 Time bend 1 winter 0 0 – 999 °C<br />

winter set<br />

setpoint<br />

Enable time bend 2 Setpoint time bend 2 N N/Y ---<br />

setpoint<br />

enabling<br />

Setpoint time bend 2 Setpoint time bend 2 0 0-23 Hours<br />

start<br />

start hour<br />

Setpoint time bend 2 Setpoint time bend 2 0 0-59 Minutes<br />

start<br />

start minutes<br />

Setpoint time bend 2 Time bend 2 summer 0 0 - 999 °C<br />

summer set<br />

setpoint<br />

Setpoint time bend 2 Time bend 2 winter 0 0 – 999 °C<br />

winter set<br />

setpoint<br />

Enable time bend 3 Setpoint time bend 3 N N/Y ---<br />

setpoint<br />

enabling<br />

Setpoint time bend 3 Setpoint time bend 3 0 0-23 Hours<br />

start<br />

start hour<br />

Setpoint time bend 3 Setpoint time bend 3 0 0-59 Minutes<br />

start<br />

start minutes<br />

Setpoint time bend 3 Time bend 3 summer 0 0 - 999 °C<br />

summer set<br />

setpoint<br />

Setpoint time bend 3 Time bend 3 winter 0 0 – 999 °C<br />

winter set<br />

setpoint<br />

Enable time bend 4 Setpoint time bends 4 N N/Y ---<br />

setpoint<br />

enabling<br />

Setpoint time bend 4 Setpoint time bend 4 0 0-23 Hours<br />

start<br />

Setpoint time bend 4<br />

start<br />

start hour<br />

Setpoint time bend 4<br />

start minutes<br />

0 0-59 Minutes<br />

<strong>Rhoss</strong> S.p.A. S.A.T.<br />

Rev. 1.0 20/01/05 55


PGD description Parameter<br />

description<br />

Default Limits Unit of<br />

measur<br />

ement<br />

Setpoint time bend 4 Time bend 4 summer 0 0 - 999 °C<br />

summer set<br />

setpoint<br />

Setpoint time bend 4 Time bend 4 winter 0 0 – 999 °C<br />

winter set<br />

setpoint<br />

Enable time bend On- On-off time bends N N/Y ---<br />

Off<br />

enabling<br />

ON/OFF time bend On-off time bend 0<br />

0-23 Hours<br />

switch ON<br />

switch ON hour<br />

ON/OFF<br />

time bend On-off time bend 0 0-59 Minutes<br />

switch ON<br />

switch ON minutes<br />

ON/OFF time bend On-off time bend<br />

0 0-23<br />

Hours<br />

switch OFF<br />

switch OFF hour<br />

ON/OFF time bend On-off time bend 0 0-59<br />

Minutes<br />

switch OFF<br />

switch OFF minutes<br />

ON/OFF time bend On-off time bend *** Mon-Tue-Wed-Thu-Fri-<br />

---<br />

From<br />

switch-ON day<br />

Sat-Sun<br />

ON/OFF time bend to On-off time bend end *** Mon-Tue-Wed-Thu-Fri-<br />

---<br />

day<br />

Sat-Sun<br />

<strong>Rhoss</strong> S.p.A. S.A.T.<br />

Rev. 1.0 20/01/05 56


13 SUPERVISORY<br />

The transmission of the values through RS485, RS232 Carel prot ocol, Modbus, is possible.<br />

A communication database that includes all the most important variables of the program is provided,<br />

from the read values of the probe to the set parameters on the masks. The following table reports the<br />

database, split in digital integer and analogics variables, reporting the description, the address and<br />

the type (only reading ”R” or reading/w riting “R/W”) for every one.<br />

13.1 Variables: Digitals – Inte ger – Analogic<br />

s<br />

Description Type Address R/W Notes<br />

Digitals<br />

Working mode DIG 1 RW 0:Cooling 1:Heating<br />

On/Off unit by supervisory DIG 2 RW 0:Off 1:On<br />

Unit state DIG 3 R 0:Off 1:On<br />

Number 1 digital inlet DIG 4 R 0:C 1:O<br />

Number 2 digital inlet DIG 5 R 0:C 1:O<br />

Number 3 digital inlet DIG 6 R 0:C 1:O<br />

Number 4 digital inlet DIG 7 R 0:C 1:O<br />

Number 5 digital inlet DIG 8 R 0:C 1:O<br />

Number 6 digital inlet DIG 9 R 0:C 1:O<br />

Number 7 digital inlet DIG 10 R 0:C 1:O<br />

Number 8 digital inlet DIG 11 R 0:C 1:O<br />

Number 9 digital inlet DIG 12 R 0:C 1:O<br />

Number 10 digital inlet DIG 13 R 0:C 1:O<br />

Number 11 digital inlet DIG 14 R 0:C 1:O<br />

Number 12 digital inlet DIG 15 R 0:C 1:O<br />

Number 1 digital outlet DIG 16 R 0:O 1:C<br />

Number 2 digital outlet DIG 17 R 0:O 1:C<br />

Number 3 digital outlet DIG 18 R 0:O 1:C<br />

Number 4 digital outlet DIG 19 R 0:O 1:C<br />

Number 5 digital outlet DIG 20 R 0:O 1:C<br />

Number 6 digital outlet DIG 21 R 0:O 1:C<br />

Number 7 digital outlet DIG 22 R 0:O 1:C<br />

Number 8 digital outlet DIG 23 R 0:O 1:C<br />

Number 9 digital outlet DIG 24 R 0:O 1:C<br />

Number 10 digital outlet DIG 25 R 0:O 1:C<br />

Number 11 digital outlet DIG 26 R 0:O 1:C<br />

Number 12 digital outlet DIG 27 R 0:O 1:C<br />

Antifreeze alarm DIG 28 R 0:OK 1:Alarm<br />

Circ.1 comp.1 thermal alarm DIG 29 R 0:OK 1:Alarm<br />

Circ.1 comp.2 thermal alarm DIG 30 R 0:OK 1:Alarm<br />

Circ.2 comp.1 thermal alarm DIG 31 R 0:OK 1:Alarm<br />

Circ.2 comp.2 thermal alarm DIG 32 R 0:OK 1:Alarm<br />

Evaporator flow alarm DIG 33 R 0:OK 1:Alarm<br />

Circuit 1 low pressure alarm DIG 35 R 0:OK 1:Alarm<br />

Circuit 2 low pressure alarm DIG 36 R 0:OK 1:Alarm<br />

Condenser fan thermal alarm DIG 37 R 0:OK 1:Alarm<br />

Pump 1 working hours alarm DIG 38 R 0:OK 1:Alarm<br />

Pump 2 working hours alarm DIG 39 R 0:OK 1:Alarm<br />

Circ.1 comp.1 working hours alarm DIG 40 R 0:OK 1:Alarm<br />

Circ.1 comp.2 working hours alarm DIG 41 R 0:OK 1:Alarm<br />

Circ.2 comp.1 working hours alarm DIG 42 R 0:OK 1:Alarm<br />

<strong>Rhoss</strong> S.p.A. S.A.T.<br />

Rev. 1.0 20/01/05 57


Description Type Address R/W Notes<br />

Circ.2 comp.2 working hour alarm DIG 43 R 0:OK 1:Alarm<br />

Pump 1 working hours alarm DIG 44 R 0:OK 1:Alarm<br />

Pump 2 working hours alarm DIG 45 R 0:OK 1:Alarm<br />

Circ.1 transducer high pressure<br />

alarm DIG 46 R 0:OK 1:Alarm<br />

Circ.1 transducer high pressure<br />

alarm DIG 47 R 0:OK 1:Alarm<br />

Damaged B1 probe alarm DIG 48 R 0:OK 1:Alarm<br />

Damaged B2 probe alarm DIG 49 R 0:OK 1:Alarm<br />

Damaged B3 probe alarm DIG 50 R 0:OK 1:Alarm<br />

Damaged B4 probe alarm DIG 51 R 0:OK 1:Alarm<br />

Damaged B5 probe alarm DIG 52 R 0:OK 1:Alarm<br />

Damaged B6 probe alarm DIG 53 R 0:OK 1:Alarm<br />

Damaged B7 probe alarm DIG 54 R 0:OK 1:Alarm<br />

Damaged B8 probe alarm DIG 55 R 0:OK 1:Alarm<br />

Damaged B9 probe alarm DIG 56 R 0:OK 1:Alarm<br />

Damaged clock card alarm DIG 57 R 0:OK 1:Alarm<br />

Sink refrigerating circuits alarm DIG 58 R 0:OK 1:Alarm<br />

Wrong sequence phases alarm DIG 59 R 0:OK 1:Alarm<br />

Line 1 high voltage alarm DIG 60 R 0:OK 1:Alarm<br />

Line 1 low voltage alarm DIG 61 R 0:OK 1:Alarm<br />

Line 2 high voltage alarm DIG 62 R 0:OK 1:Alarm<br />

Line 2 low voltage alarm DIG 63 R 0:OK 1:Alarm<br />

Line 3 high voltage alarm DIG 64 R 0:OK 1:Alarm<br />

Line 3 low voltage alarm DIG 65 R 0:OK 1:Alarm<br />

Damaged pump 1 alarm DIG 66 R 0:OK 1:Alarm<br />

Damaged pump 2 alarm DIG 67 R 0:OK 1:Alarm<br />

Unit type DIG 68 RW 0:CH 1:CH+HP<br />

Second pump enabling DIG 69 RW 0:NO 1:YES<br />

Three-phase alarms enabling DIG 70 RW 0:NO 1:YES<br />

Summer compensation enabling DIG 71 RW 0: NO 1:YES<br />

Winter compensation enabling DIG 72 RW 0: NO 1:YES<br />

Probe 1 enabling DIG 73 RW 0: NO 1:YES<br />

Probe 2 enabling DIG 74 RW 0: NO 1:YES<br />

Probe 3 enabling<br />

DIG 75 RW 0: NO 1:YES<br />

Probe 4 enabling<br />

DIG 76 RW 0: NO 1:YES<br />

Probe 5 enabling<br />

DIG 77 RW 0: NO 1:YES<br />

Probe 6 enabling DIG 78 RW 0: NO 1:YES<br />

Probe 7 enabling DIG 79 RW 0: NO 1:YES<br />

Probe 8 enabling DIG 80 RW 0: NO 1:YES<br />

Probe 9 enabling<br />

DIG 81 RW 0: NO 1:YES<br />

Ventilation control type DIG 82 RW 0: On-Off 1:Proporzionale<br />

Pump/s working type DIG 83 RW 0:Unit ON 1:Compressor ON<br />

Pre-ventilation enabling DIG 84 RW 0:NO 1:YES<br />

Fan forcing enabling for HP DIG 85 RW 0:NO 1:YES<br />

Fan working mode DIG 86 RW 0:NO LAG 1:LAG COMPRESSOR<br />

Ventilation enabling in dripping<br />

mode DIG 87 RW 0:NO 1:YES<br />

HP prevention enabling in normal<br />

function DIG 88 RW 0:NO 1:YES<br />

Defrost type DIG 89 RW 0:NO 1:YES<br />

HP prevention enabling in defrost<br />

mode DIG 90 RW 0:NO 1:YES<br />

<strong>Rhoss</strong> S.p.A. S.A.T.<br />

Rev. 1.0 20/01/05 58


Description Type Address R/W Notes<br />

HP alarm enabling by transducer DIG 91 RW 0:NO 1:YES<br />

Time bends reset enabling in defrost<br />

mode DIG 92 RW 0:NO 1:YES<br />

Summer/winter swap enabling by<br />

DIN DIG 93 RW 0:NO 1:YES<br />

Discharged unit alarm enabling DIG 94 RW 0: NO 1:YES<br />

Setpoint time bend 1 enabling DIG 95 RW 0:NO 1:YES<br />

Setpoint time bend 2 enabling DIG 96 RW 0:NO 1:YES<br />

Setpoint time bend 3 enabling DIG 97 RW 0: NO 1:YES<br />

Setpoint time bend 4 enabling DIG 98 RW 0: NO 1:YES<br />

Setpoint on-off time bend enabling DIG 99 RW 0:NO 1:YES<br />

Integer<br />

0: ON 1:OFF BY ALARM 2:OFF BY<br />

SUPERV. 3:OFF BY T. ZONE 4:OFF<br />

BY DIG.IN. 5:OFF BY KEYB.<br />

Unit state INT 1 R 6: MANUAL<br />

0:SUMMER 1:WINTER 2:WINTER /<br />

Working mode INT 2 R DEFROST<br />

Circ.1 comp.1 state INT 3 R 0: CAN START-UP 1:ON 2:ON BY<br />

Circ.1 comp.2 state INT 4 R TIMING 3:OFF BY TIMING 4:OFF BY<br />

Circ.2 comp.1 state INT 5 R PREVENT<br />

5:OFF BY DEFROST<br />

6: TIME FROM PUMP 7:UNIT OFF<br />

Circ.2 comp.2 state INT 6 R 8: OFF BY ALARM 9:DISABLE<br />

Circ.1 fan state INT 7 R 0:NORMAL MODE 1:HP PREVENT<br />

2: TIME FROM PUMP 3:UNIT OFF<br />

4: OFF BY DEFROST 5:PRE-<br />

VENTILATION<br />

6:FORCE IN DROPP.<br />

7: POST-VENT BY HP 8:ON (by<br />

dig.out) 9:OFF(by dig.out)<br />

Circ.2 fan state INT 8 R 10:OVERLOAD FAN AL.<br />

Circ.1 comp. switch-on hours INT 9 R<br />

Circ.1 comp. switch-on minutes INT 10 R<br />

Circ.2 comp. switch-on hours INT 11 R<br />

Circ.2 comp. switch-on minutes INT 12 R<br />

Line 1 voltage INT 13 R<br />

Line 2 voltage INT 14 R<br />

Line 3 voltage INT 15 R<br />

Higher part of the software’s version INT 16 R<br />

Lower part of the software’s version INT 17 R<br />

Unit compressors number INT 18 R<br />

Circuits number INT 19 R<br />

Ventilation groups number INT 20 R<br />

Minimum threshold of line voltage INT 21 RW<br />

Maximum threshold of line voltage INT 22 RW<br />

Pump/s switch-off delay INT 23 RW<br />

Compressor switch-on delay by<br />

pump switch-on INT 24 RW<br />

Pump rotation time INT 25 RW<br />

Test pumps rotation time INT 26 RW<br />

Pumps working mode<br />

INT 27 RW 0: Auto 1:Only P1 2:Only P2<br />

Compressor on minimum time INT 28 RW<br />

Compressor off minimum time INT 29 RW<br />

<strong>Rhoss</strong> S.p.A. S.A.T.<br />

Rev. 1.0 20/01/05 59


Description Type Address R/W Notes<br />

Min time among ON of different<br />

compressors INT 30 RW<br />

Min time among ON of the same<br />

compres. INT 31 RW<br />

Fan Speed-up time INT 32 RW<br />

Fan speed in dripping mode INT 33 RW<br />

Antifreeze delay by pump ON INT 34 RW<br />

Flow alarm delay by pump ON INT 35 RW<br />

Flow alarm delay at running INT 36 RW<br />

Flow alarm reset delay INT 37 RW<br />

Thermal alarm delay by compressor<br />

ON INT 38 RW<br />

Faulted flow/pump alarm number INT 39 RW<br />

Automatic antifreeze alarm number INT 40 RW<br />

Automatic compressor thermal<br />

alarm number INT 41 RW<br />

Automatic fan thermal alarm number INT 42 RW<br />

Automatic LP alarm number INT 43 RW<br />

Defrost delay INT 44 RW<br />

Defrost maximum last INT 45 RW<br />

Minimum time between 2 following<br />

defrosts<br />

INT 46 RW<br />

T.off comp. at the defrost ON INT 47 RW<br />

Compressor off time to the OFF of<br />

the defrost INT 48 RW<br />

Pre-ventilation time INT 49 RW<br />

Post-ventilation time for HP INT 50 RW<br />

LP alarm delay by compressor ON INT 51 RW<br />

LP alarm delay at running INT 52 RW<br />

Discharged unit alarm delay INT 53 RW<br />

Setpoint time bend 1 start hour INT 54 RW<br />

Setpoint time bend 1 start minutes INT 55 RW<br />

Setpoint time bend 2 start hour INT 56 RW<br />

Setpoint time bend 2 start minutes INT 57 RW<br />

Setpoint time bend 3 start hour INT 58 RW<br />

Setpoint time bend 3 start minutes INT 59 RW<br />

Setpoint time bend 4 start hour INT 60 RW<br />

Setpoint time bend 4 start minutes INT 61 RW<br />

On-off time bend start hour INT 62 RW<br />

On-off time bend start minutes INT 63 RW<br />

On-off time bend end hour INT 64 RW<br />

On-off time bend end minutes INT 65 RW<br />

On-off time bend start day INT 66 RW<br />

On-off time bend end day INT 67 RW<br />

Pump 1 work hours (High part<br />

example..99…) INT 71 R<br />

Pump 1 work hours (Low part<br />

ex.:..999) INT 72 R<br />

Pump 2 work hours (high part<br />

es.:99…) INT<br />

73 R<br />

Pump 2 work hours (low part<br />

ex.:..999) INT 74 R<br />

<strong>Rhoss</strong> S.p.A. S.A.T.<br />

Rev. 1.0 20/01/05 60


Description Type Address R/W Notes<br />

Comp. 1 work hours (high part<br />

ex.:99…)<br />

INT 75 R<br />

Comp. 1 work hours (low part<br />

ex.:..999) INT 76 R<br />

Comp. 2 work hours (high part<br />

ex.:99…) INT 77 R<br />

Comp. 2 work hours (low part<br />

ex.:..999) INT 78 R<br />

Comp. 3 work hours (high part<br />

ex.:99…)<br />

INT 79 R<br />

Comp. 3 work hours (low part<br />

es.:..999)<br />

INT 80 R<br />

Comp. 4 work hours (high part<br />

ex.:99…) INT 81 R<br />

Comp. 4 work hours (low part<br />

ex.:..999) INT 82 R<br />

Analogics<br />

inlet 1 ANA 1 RW<br />

Analogic inlet 2 ANA 2 R<br />

Analogic inlet 3 ANA 3 R<br />

Analogic inlet 4 ANA 4 R<br />

Analogic inlet 5 ANA 5 R<br />

Analogic inlet 6 ANA 6 R<br />

Analogic inlet 7 ANA 7 R<br />

Analogic inlet 8 ANA 8 R<br />

Analogic inlet 9 ANA 9 R<br />

Circ.1 fan analogic outlet ANA 10 R<br />

Circ.2 fan analogic outlet ANA 11 R<br />

Summer Setpoint ANA 12 R<br />

Winter Setpoint ANA 13 RW<br />

Work Band ANA 14 RW<br />

Winter setpoint lower limit ANA 15 RW<br />

Winter setpoint higher limit ANA 16 RW<br />

Summer setpoint lower limit ANA 17 RW<br />

Summer setpoint higher limit ANA 18 RW<br />

Summer condensation setpoint ANA 19 RW<br />

Summer condensation differential ANA 20 RW<br />

Winter condensation differential ANA 21 RW<br />

Winter condensation differential ANA 22 RW<br />

Fan maximum speed ANA 23 RW<br />

Fan minimum speed ANA 24 RW<br />

Fan cut-off hysteresis ANA 25 RW<br />

HP prevention setpoint in pressure ANA 26 RW<br />

HP prevention differential in<br />

pressure ANA 27 RW<br />

HP prevention setpoint in<br />

temperature ANA 28 RW<br />

HP prevention differential in<br />

temperature ANA 29 RW<br />

HP prevention setpoint in pressure<br />

and defrost ANA 30 RW<br />

HP prevention differential in ANA 31 RW<br />

<strong>Rhoss</strong> S.p.A. S.A.T.<br />

Rev. 1.0 20/01/05 61


Description Type Address R/W Notes<br />

pressure and defrost<br />

HP prevention setpoint in<br />

temperature and defrost ANA 32 RW<br />

HP prevention different. In temp.<br />

and defro st<br />

ANA 33<br />

RW<br />

High pressure alarm setpoint ANA 34<br />

RW<br />

High pressure alarm differential ANA 35 RW<br />

Defrost start threshold in pressure ANA 36 RW<br />

Defrost sop threshold in pressure<br />

ANA 37 RW<br />

Defrost start threshold in<br />

temperature ANA 38 RW<br />

Defrost stop threshold<br />

in<br />

temperature<br />

ANA 39 RW<br />

Summer compensation setpoint ANA 40 RW<br />

Summer compensat ion setpoint ANA 41 RW<br />

Maximum summer compensation ANA 42 RW<br />

Winter compensation setpoint ANA 43 RW<br />

Winter compensation differential ANA 44 RW<br />

Maximum winter compensation ANA 45 RW<br />

Electrical heaters offset ANA 46 RW<br />

Electrical heaters hysteresis ANA 47 RW<br />

Antifreeze alarm setpoint ANA 48 RW<br />

Antifreeze differential ANA 49 RW<br />

Temperature difference in the<br />

discharged unit outlet terminal ANA 50 RW<br />

Time bend 1 summer setpoint ANA 51 RW<br />

Time bend 1 winter setpoint ANA 52 RW<br />

Time bend 2 summer setpoint ANA 53 RW<br />

Time bend 2 winter setpoint ANA 54 RW<br />

Time bend 3 summer setpoint ANA 55 RW<br />

Time bend 3 winter setpoint ANA 56 RW<br />

Time bend 4 summer setpoint ANA 57 RW<br />

Time bend 4 winter setpoint ANA 58 RW<br />

13.2 Variables database for LonMark protocol<br />

The software is provided of a database for the interfacement with a LonWork system and is conformable<br />

at the LonMark ® 8040_10 – Chiller profile.<br />

It’s necessary to set the special mask in Factory menu -> Configuration menu the LonMark protocol.<br />

Carel has already got the LonWorks® programmed cards in the factory, giving then the following sell<br />

code:<br />

PCO10001F0<br />

PCO1 SER. LON FTT10 STD CHILLER PROFILE<br />

The software is available even by request like NXE file, witch, the LonWorks® system integrator, can<br />

program the (PCO*0000F0) empty cards right there.<br />

<strong>Rhoss</strong> S.p.A. S.A.T.<br />

Rev. 1.0 20/01/05 62


13.2.1 Digital variables<br />

Carel<br />

Nome LonMark LonMark SNVT<br />

Description address Type<br />

type<br />

Notes<br />

On/Off unit by<br />

nviChillerEnable SNVT_switch<br />

supervisory 1 RW<br />

0:Off 1:On<br />

Unit state 2 R nvoOnOff SNVT_switch 0:Off 1:On<br />

13.2.2 Analogic variables<br />

Carel LonMark name LonMark SNVT<br />

Description address Type<br />

type<br />

Notes<br />

Unit summer setpoint 1 RW nviCoolSetpt SNVT_temp_p °C<br />

Setpoint in use by the<br />

nvoActiveSetpoint SNVT_temp_p<br />

unit 2 R<br />

°C<br />

Chiller inlet<br />

nvoEntChwTemp SNVT_temp_p<br />

temperature 4 R<br />

°C<br />

Unit winter setpoint 5 RW nviHeatSetpt SNVT_temp_p °C<br />

Chiller outlet<br />

nvoLvgChwtemp SNVT_temp_p<br />

temperature 6 R<br />

°C<br />

<strong>Rhoss</strong> S.p.A. S.A.T.<br />

Rev. 1.0 20/01/05 63

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!