26.12.2012 Views

Untitled

Untitled

Untitled

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Finite Element Analysis of Membrane Structures 53<br />

Table 1. Index map for Q array<br />

Indices Values<br />

a 1 2 3<br />

I,J 1,1 2,2 1,2 & 2,1<br />

b 1 2 3<br />

i,j 1,1 2,2 1,2 & 2,1<br />

where A is thereference area for the triangular element.<br />

The variation of gij results in the values<br />

δg11 = 2 δ˜x 2 − δ˜x 1 T ∆˜x 21<br />

δg12 = δ˜x 2 − δ˜x 1 T ∆˜x 31 + δ˜x 3 − δ˜x 1 T ∆˜x 21<br />

δg22 = 2 δ˜x 3 − δ˜x 1 T ∆˜x 31<br />

At this stage it is convenient to transform the second order tensors to matrix<br />

form and write<br />

1<br />

2 δCIJSIJ = δEIJSIJ = ⎡ ⎤<br />

S11 <br />

δE11 δE22 2 δE12 ⎣ S22 ⎦ = δE T S (35)<br />

or for the alternative form<br />

1<br />

2 δgijsij = 1<br />

⎡<br />

<br />

δg11 δg22 2 δg12 ⎣<br />

2<br />

as<br />

⎡ s11<br />

s22<br />

s12<br />

⎤<br />

⎦<br />

S12<br />

(34)<br />

= 1<br />

2 δgT s (36)<br />

Using (34) we obtain the result directly in terms of global cartesian components<br />

1<br />

2 δgT s = δ(˜x 1 ) T δ(˜x 2 ) T δ(˜x 3 ) T [b] T s<br />

= δ(˜x 1 ) T δ(˜x 2 ) T δ(˜x 3 ) T [b] T Q T S = δE T S (37)<br />

where the strain-displacement matrix b is given by<br />

⎡<br />

−(∆˜x<br />

b = ⎣<br />

21 ) T<br />

(∆˜x 21 ) T<br />

0<br />

−(∆˜x 31 ) T<br />

0 (∆˜x 31 ) T<br />

−(∆˜x 21 + ∆˜x 31 ) T (∆˜x 31 ) T (∆˜x 21 ) T<br />

⎤<br />

⎦<br />

<br />

Thus, directly we have in each element<br />

3×9<br />

(38)<br />

δE = Q b δ˜x = 1<br />

δC (39)<br />

2<br />

where ˜x denotes the three nodal values on the element. It is immediately obvious<br />

that we can describe a strain-displacement matrix for the variation of E as<br />

B = Q b (40)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!