26.12.2012 Views

Untitled

Untitled

Untitled

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F.E.M. for Prestressed Saint Venant-Kirchhoff Hyperelastic Membranes 141<br />

The geometrical and material components of the stiffness matrix S can be developed<br />

as follows:<br />

S geo <br />

=<br />

S mat <br />

mat<br />

S11 S<br />

=<br />

mat<br />

<br />

12<br />

(A.7)<br />

<br />

geo<br />

S11 Sgeo 12<br />

S geo<br />

21 Sgeo<br />

22<br />

S geo<br />

11 = s1I3 S mat<br />

11<br />

S geo<br />

12 = s3I3 S mat<br />

12<br />

S geo<br />

21 = s3I3 S mat<br />

21<br />

S geo<br />

22 = s2I3 S mat<br />

22<br />

= C11f1 f f T 1<br />

f + C33<br />

C f2 f f T 2<br />

S mat<br />

21<br />

S mat<br />

22<br />

f + C13f1f<br />

+ C31<br />

f f T 2<br />

C f2 f f T 1<br />

f (A.8)<br />

= C13f1 f f T<br />

f + C32 C f2 f f T<br />

f + C12f1 f f T<br />

f + C33 C f2 f f T<br />

f (A.9)<br />

= C31<br />

1<br />

C f1 f f T 1<br />

= C33<br />

C f1 f f T 1<br />

f + C23f2f<br />

+ C33<br />

f f T 2<br />

2<br />

2<br />

C f1 f f T 2<br />

f + C22f2f<br />

+ C32<br />

f f T 2<br />

C f1 f f T 2<br />

1<br />

f + C21f2f<br />

(A.10)<br />

f f T 1<br />

f + C23f2f<br />

(A.11)<br />

where si is the ith-component of the second Piola-Kirchfoff stress tensor in Voigt<br />

notation, I3 is the identity 3x3 matrix, Cij C is a component of the fourth order tensor<br />

of elastic moduli in Voigt notation and the vectors f1 f and f2 f constitute the first and<br />

second column of the deformation gradient tensor which can be expressed in their<br />

transpose forms as:<br />

f T f 1 = <br />

1+g1 g2 g3 f T f 2 = <br />

g4 1 + g5 g6<br />

(A.12)<br />

References<br />

1. J. Schlaich. On some recent lightweight structures. Journal of the IASS,<br />

43(139):69–79, 2002.<br />

2. K. Ishii. Membrane Structures in Japan. SPS Publishing Company, Tokio, 1995.<br />

3. H. Berger. Form and function of tensile structures for permanent buildings.<br />

Engineering Structures, 21:669–679, 1999.<br />

4. H. Berger. Light Structures. Structures of light. Birkhuser, 1996.<br />

5. W. J. Lewis. Lightweight tension membranes: an overview. Civil Engineering,<br />

126:171–181, 1998.<br />

6. A. E. Green and W. Zerna. Theoretical Elasticity. Oxford University Press, 2nd<br />

edition, 1968.<br />

7. J.W.Leonard. Tension structures. McGraw-Hill, New York, 1988.<br />

8. F. Otto. Tensile structures. MIT Press, Cambridge, 1967.<br />

9. S. Timoshenko and S. Woinowsky-Krieger. Theory of plates and shells. McGraw-<br />

Hill, New York, 1959.<br />

10. M. A. Crisfield. Non-linear finite element analysis of solids and structures,<br />

volume 1: Essentials. John Wiley and Sons, 1991.<br />

11. J. T. Oden and T. Sato. Finite strains and displacements of elastic membranes<br />

by the finite element method. International Journal of Solids and Structures,<br />

3:471–488, 1967.<br />

12. F. Grutmann and R. L. Taylor. Theory and finite element formulation of rubberlike<br />

membrane shells using principal stretches. International Journal for<br />

Numerical Methods in Engineering, 35:1111–1126, 1992.<br />

13. E. A. Souza, D. Peric, and D. R. J. Owen. Finite elasticity in spatial description<br />

linearization aspects with 3-d membrane applications. International Journal for<br />

Numerical Methods in Engineering, 38:3365–3381, 1995.<br />

f f T 1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!