11.02.2013 Views

Computational Methods for Debonding in Composites

Computational Methods for Debonding in Composites

Computational Methods for Debonding in Composites

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

6 Study of Delam<strong>in</strong>ation with <strong>in</strong> <strong>Composites</strong> 129<br />

10<br />

0<br />

-10<br />

-20<br />

-30<br />

-0.15 -0.1 -0.05 0 0.05<br />

(a) (b)<br />

10<br />

0<br />

-10<br />

-20<br />

-30<br />

-0.15 -0.1 -0.05 0.05<br />

Fig. 6.1 Stress–stra<strong>in</strong> graph obta<strong>in</strong>ed with the damage <strong>for</strong>mulation. In (a) is represented a material<br />

with l<strong>in</strong>ear soften<strong>in</strong>g while (b) shows a material with exponential soften<strong>in</strong>g<br />

Exponential soften<strong>in</strong>g: This function was first proposed by Oliver et al. [9], to<br />

obta<strong>in</strong> an exponential soften<strong>in</strong>g <strong>in</strong> the material. The expression of the damage<br />

parameter is:<br />

d = G[ f (σσσ 0)] = 1 − τττ0<br />

f (σσσ 0) e<br />

A<br />

⎛<br />

⎝1− f (σσσ 0)<br />

τττ 0<br />

⎞<br />

⎠<br />

(6.34)<br />

The parameter A depends of the fracture energy of the material. Its expression is<br />

def<strong>in</strong>ed <strong>in</strong> the follow<strong>in</strong>g section. And, the value τττ 0 , corresponds to the limit elastic<br />

stress that can be found <strong>in</strong> the material. When us<strong>in</strong>g the damage surface based on the<br />

norm of the pr<strong>in</strong>cipal stresses, differentiat<strong>in</strong>g between the compression and tension<br />

states, the limit stress to be def<strong>in</strong>ed is the one correspond<strong>in</strong>g to the compression<br />

case, σ max<br />

c .<br />

Figure 6.1 a shows the stress-stra<strong>in</strong> relation obta<strong>in</strong>ed <strong>for</strong> a material with a l<strong>in</strong>ear<br />

soften<strong>in</strong>g; and Fig. 6.1b shows the evolution of the same material when an exponential<br />

soften<strong>in</strong>g is applied to it. In both cases the relation def<strong>in</strong>ed between the<br />

compression strength and the tension strength is: N = 2.<br />

6.2.3.4 Parameter A<br />

The parameter A, appear<strong>in</strong>g <strong>in</strong> Eqs. (6.33) and (6.34), is obta<strong>in</strong>ed from the dissipation<br />

equation of the material, consider<strong>in</strong>g an uniaxial process under a monotonous<br />

<strong>in</strong>creas<strong>in</strong>g load. The parameter deduction can be obta<strong>in</strong>ed from [11] and their<br />

expression is,<br />

L<strong>in</strong>ear soften<strong>in</strong>g: A = − 1 (τττ<br />

2<br />

0 ) 2<br />

gcC0<br />

Exponential soften<strong>in</strong>g: A =+<br />

1<br />

gcC0<br />

(τττ 0 1<br />

−<br />

) 2 2<br />

(6.35)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!