11.02.2013 Views

Computational Methods for Debonding in Composites

Computational Methods for Debonding in Composites

Computational Methods for Debonding in Composites

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

48 R. Rolfes et al.<br />

A dev is the deviator of the structural tensor A, A is the constant bend<strong>in</strong>g tensor<br />

and B is the first derivative of the l<strong>in</strong>ear terms <strong>in</strong> σ of the quadratic yield locus. This<br />

enables us to state the yield function Eq. (2.37) <strong>in</strong> the more general <strong>for</strong>m:<br />

2.3.2.3 Parameter Identification<br />

f = 1<br />

σ : A : σ + B : σ − 1 (2.40)<br />

2<br />

To determ<strong>in</strong>e the five material parameters α1, α2, α3, α32 and α4 of the yield function,<br />

material simulations of the micromechanical unit cell are used. As already<br />

expla<strong>in</strong>ed, <strong>in</strong> fiber direction yield<strong>in</strong>g is not assumed, because the strength <strong>in</strong> the preferred<br />

direction is determ<strong>in</strong>ed by the strength of the fibers. So the parameter α4 is set<br />

to zero and there rema<strong>in</strong> four parameters to be determ<strong>in</strong>ed by means of four virtual<br />

material tests done with the micro model. The material tests and there representation<br />

<strong>in</strong> stress space are:<br />

1. Simple shear <strong>in</strong> the plane perpendicular to the fiber (transverse shear)<br />

σ = devσ = σ p<strong>in</strong>d ⎡ ⎤ ⎡ ⎤<br />

0 y⊥⊥ 0<br />

0<br />

⎢ ⎥ ⎢ ⎥<br />

= ⎣ y⊥⊥ 0 0⎦,<br />

a = ⎣ 0 ⎦<br />

0 0 0<br />

1<br />

I1 =(y⊥⊥) 2 , I2 = 0, I3 = 0, I4 = 0<br />

� f = α1 (y⊥⊥) 2 − 1 = 0<br />

α1 := 1/(y⊥⊥) 2 (2.41)<br />

2. Simple shear <strong>in</strong> the fiber plane (<strong>in</strong>-plane shear)<br />

σ = devσ = σ p<strong>in</strong>d ⎡ ⎤<br />

0 y⊥� 0<br />

⎢ ⎥<br />

= ⎣ y⊥� 0 0⎦,<br />

⎡ ⎤<br />

1<br />

⎢ ⎥<br />

a = ⎣ 0 ⎦<br />

0 0 0<br />

0<br />

I1 = 0, I2 =(y ⊥�) 2 , I3 = 0, I4 = 0<br />

� f = α2 (y ⊥�) 2 − 1 = 0<br />

α2 := 1/(y ⊥�) 2 (2.42)<br />

3. Uniaxial tension and uniaxial compression perpendicular to the fiber<br />

⎡ ⎤<br />

00 0<br />

⎢ ⎥<br />

σ = ⎣ 00 0⎦,<br />

⎡ ⎤<br />

1<br />

⎢ ⎥<br />

a = ⎣ 0 ⎦<br />

00y⊥<br />

0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!