11.02.2013 Views

Computational Methods for Debonding in Composites

Computational Methods for Debonding in Composites

Computational Methods for Debonding in Composites

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

2 Material and Failure Models <strong>for</strong> Textile <strong>Composites</strong> 47<br />

where the stress components σ reac and σ p<strong>in</strong>d are:<br />

2 ( trσ − aT σa) 1−<br />

� �� �<br />

p<br />

1<br />

2 ( trσ − 3aT σa) A<br />

� �� �<br />

Ta<br />

σ p<strong>in</strong>d = σ − 1<br />

2 ( trσ − aT σa)1 + 1<br />

2 ( trσ − 3aT σa)A<br />

σ reac = 1<br />

(2.34)<br />

The term Ta can be <strong>in</strong>terpreted as a fiber overstress, exceed<strong>in</strong>g the hydrostatical<br />

part of the stress tensor and p represents the hydrostatical pressure. In order to<br />

account <strong>for</strong> plastification <strong>in</strong> fiber direction, the projection of the deviatoric part of<br />

the reaction stress tensor σ reac onto a can be regarded:<br />

a T ( devσ reac )a = a T Ta( devA)a = Ta a T (A − 1 2<br />

1)a =<br />

3 3 Ta (2.35)<br />

The yield condition can be composed of the basic <strong>in</strong>variants of the related stresses<br />

and the structural tensor. The <strong>in</strong>variants I1 and I2 are <strong>for</strong>mulated with σ p<strong>in</strong>d , see [1],<br />

[18] and [20]:<br />

I1 := 1<br />

2 tr (σ p<strong>in</strong>d ) 2 − aT (σ p<strong>in</strong>d ) 2 a<br />

I2 := a T (σ p<strong>in</strong>d ) 2 a<br />

I3 := trσ − a T σa<br />

I4 := 3<br />

2 aT σ dev a = Ta<br />

(2.36)<br />

The <strong>in</strong>variant I3 represents the hydrostatical pressure and thus accounts <strong>for</strong> a pressure<br />

dependency of the yield locus. The <strong>in</strong>variant I4 is chosen to regard plastification<br />

<strong>in</strong> fiber direction. The yield function as a function of the <strong>in</strong>troduced <strong>in</strong>variants is<br />

<strong>for</strong>mulated as<br />

f = α1 I1 + α2 I2 + α3I3 + α32I 2 3 + α4 I 2 4 − 1 (2.37)<br />

with the flow parameters α1, α2, α3, α32 and α4. The first and second derivative of<br />

the yield locus Eq. (2.37) are:<br />

∂σ f = ∂Ii f ∂σ Ii f<br />

= α1 σ p<strong>in</strong>d +(α2 − α1)(Aσ p<strong>in</strong>d + σ p<strong>in</strong>d A)+α3(1 − A)<br />

+2α32I3(1 − A)α4 (3I4A dev )=: A : σ + B<br />

∂ 2 σσ f = α1 P p<strong>in</strong>d +(α2 − α1)P p<strong>in</strong>d<br />

A + 2α32(1 − A) ⊗ (1 − A)<br />

+α3(1 − A) 9<br />

2 α4 A dev ⊗ A dev =: A<br />

with the projection tensor<br />

P p<strong>in</strong>d := ∂σ σ p<strong>in</strong>d = I − 1<br />

2<br />

(1 ⊗ 1)+1<br />

2<br />

and (P p<strong>in</strong>d<br />

A )ijkl := AimP p<strong>in</strong>d<br />

p<strong>in</strong>d<br />

mjkl + AmjPimkl .<br />

(2.38)<br />

3<br />

(A ⊗ 1 + 1 ⊗ A) − (A ⊗ A) (2.39)<br />

2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!