11.02.2013 Views

Computational Methods for Debonding in Composites

Computational Methods for Debonding in Composites

Computational Methods for Debonding in Composites

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

1 <strong>Computational</strong> <strong>Methods</strong> <strong>for</strong> <strong>Debond<strong>in</strong>g</strong> <strong>in</strong> <strong>Composites</strong> 5<br />

6.4 [µm]<br />

Fig. 1.3 Layer which is unidirectionally re<strong>in</strong><strong>for</strong>ced with long fibres (above) and f<strong>in</strong>ite element<br />

discretisations <strong>for</strong> three different levels of ref<strong>in</strong>ement of a representative volume element composed<br />

of a quarter of a fibre, the surround<strong>in</strong>g epoxy matrix and the <strong>in</strong>terface between fibre and epoxy [21]<br />

modelled via <strong>in</strong>terface elements, equipped with cohesive-zone models, quite similar<br />

to models <strong>for</strong> delam<strong>in</strong>ation. An example is given <strong>in</strong> Fig. 1.3, which shows an epoxy<br />

layer, which has been re<strong>in</strong><strong>for</strong>ced uniaxially by long fibres, together with three levels<br />

of mesh ref<strong>in</strong>ement <strong>for</strong> a Representative Volume Element of the layer.<br />

1.3 Zero-Thickness Interface Elements<br />

The classical way to represent discont<strong>in</strong>uities <strong>in</strong> solids is to <strong>in</strong>troduce zero-thickness<br />

<strong>in</strong>terface elements between two neighbour<strong>in</strong>g (solid) f<strong>in</strong>ite elements, e.g. Fig. 1.2 <strong>for</strong><br />

a planar <strong>in</strong>terface element. The govern<strong>in</strong>g k<strong>in</strong>ematic quantities <strong>in</strong> <strong>in</strong>terfaces are relative<br />

displacements: vn,vs,vt <strong>for</strong> the normal and the two slid<strong>in</strong>g modes, respectively.<br />

When collect<strong>in</strong>g these relative displacements <strong>in</strong> a relative displacement vector v,<br />

they can be related to the displacements at the upper (+) and lower sides (−) of the<br />

<strong>in</strong>terface, u − n ,u + n ,u − s ,u + s ,u − t ,u + t ,by<br />

with u T =(u − n ,...........,u+ t ) and L an operator matrix:<br />

⎡<br />

⎢<br />

L = ⎢<br />

⎣<br />

v = Lu (1.1)<br />

−1 0 0<br />

+1 0 0<br />

0 −1 0<br />

0 +1 0<br />

0 0 −1<br />

0 0 +1<br />

⎤<br />

⎥<br />

⎦<br />

θ<br />

(1.2)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!