11.02.2013 Views

Computational Methods for Debonding in Composites

Computational Methods for Debonding in Composites

Computational Methods for Debonding in Composites

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

10 Elastoplastic Model<strong>in</strong>g of Multi-phase Metal Matrix Composite 205<br />

t+∆t S E<br />

t+∆t<br />

S =<br />

(10.43)<br />

1 + 2G∆λ<br />

Also, by writ<strong>in</strong>g the rate of change of porosity equation <strong>in</strong>to the <strong>in</strong>cremental <strong>for</strong>m,<br />

we obta<strong>in</strong><br />

∆ f = 3(1 − t+∆t f )∆e P m + A∆ēP<br />

(10.44)<br />

where A = A1 + A2. Likewise, <strong>for</strong> the equivalence of plastic work, we have<br />

σσσ : ∆ e P =(1 − f ) ˆσy∆ēe P<br />

(10.45)<br />

with<br />

t+∆t<br />

ˆσy = t+∆t ˆσy( t ē P + ∆ē P ) (10.46)<br />

After expand<strong>in</strong>g the term σσσ : ∆ eP , we rewrite the equivalence of plastic work at the<br />

end of the time step as<br />

∆λ t+∆t S : t+∆t S + 3 t+∆t σm t+∆t e P m =(1 − t+∆t f ) t+∆t ˆσy∆ē P = 0 (10.47)<br />

Then, def<strong>in</strong><strong>in</strong>g the functional P as<br />

t+∆t P ≡ ∆λ t+∆t S : t+∆t S + 3 t+∆t σm t+∆t e P m − (1 − t+∆t f ) t+∆t ˆσy∆ē P<br />

(10.48)<br />

Clearly, P = 0 has to be satisfied at the end of all time steps by def<strong>in</strong>ition. Likewise,<br />

the yield function has to be equal to zero at the end of all time steps <strong>for</strong> plastic<br />

load<strong>in</strong>g, that is t+∆t F ( t+∆t S, t+∆t σm, t+∆t ˆσy, t+∆t f )=0 or explicitly,<br />

1t+∆t<br />

S :<br />

2<br />

t+∆t t+∆t ˆσ 2 �<br />

y<br />

S − 2<br />

3<br />

t+∆t f ∗ q1 cosh<br />

� 3q2 t+∆t σm<br />

2 t+∆t ˆσy<br />

�<br />

− 1 − q 2 3( t+∆t f ∗ ) 2<br />

�<br />

= 0<br />

(10.49)<br />

Up to this po<strong>in</strong>t, we have presented all the relevant equations <strong>for</strong> the Gurson-<br />

Tvergaard model. In summary, we have to solve two nonl<strong>in</strong>ear algebraic equations<br />

<strong>for</strong> every time step.<br />

t+∆t P(∆ē P , ∆e P m )=0<br />

t+∆t F (∆ē P , ∆e P m )=0<br />

where ∆ē P and ∆e P m are the two unknowns (where ∆ē P is the govern<strong>in</strong>g parameter).<br />

After solv<strong>in</strong>g <strong>for</strong> ∆ē P and ∆e P m , we can determ<strong>in</strong>e ∆ f and then f ∗ .Furthermore,we<br />

can obta<strong>in</strong> F ′ , ∆λ, S and σm. With these variables determ<strong>in</strong>ed, one can obta<strong>in</strong> the<br />

updated local stress <strong>for</strong> all phases us<strong>in</strong>g the TFA equations.<br />

10.4.2 Newton’s Method<br />

For the Gurson-Tvergaard model, there is a system of two nonl<strong>in</strong>ear equations,<br />

namely t+∆t P = 0and t+∆t F = 0. That is, we have two unknowns at the end of

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!