11.02.2013 Views

Computational Methods for Debonding in Composites

Computational Methods for Debonding in Composites

Computational Methods for Debonding in Composites

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

4 Analytical and Numerical Investigation of the Length of Cohesive Zone 81<br />

There<strong>for</strong>e, the length of the cohesive zone under mode I load<strong>in</strong>g <strong>for</strong> isotropic<br />

materials can be written as a function of the fracture toughness of the material GIc:<br />

l ∞ cz = M E′ GIc<br />

(τ o ) 2<br />

(4.8)<br />

For orthotropic materials under mode I or mode II load<strong>in</strong>g, the relation between<br />

the energy release rate and the stress <strong>in</strong>tensity factor can be written as [9]:<br />

GI = K 2 I<br />

� � 1<br />

a11a22 2<br />

2<br />

GII = K 2 a11<br />

II √<br />

2<br />

��a22 � 1<br />

2<br />

a11<br />

��a22 � 1<br />

2<br />

a11<br />

+ 2a12 + a66<br />

2a11<br />

+ 2a12 + a66<br />

2a11<br />

� 1 2<br />

� 1 2<br />

(4.9)<br />

(4.10)<br />

where a11,a22,a12 and a66 are the components of the compliance matrix.<br />

There<strong>for</strong>e, the length of the cohesive zone <strong>for</strong> orthotropic materials under pure<br />

mode I or mode II load<strong>in</strong>g can be written as:<br />

l ∞ Icz = MI<br />

l ∞ E<br />

IIcz = MII<br />

′ IIGIIc �<br />

τo shear<br />

where E ′ I and E′ II are obta<strong>in</strong>ed from Eqs. (4.9) and (4.10) as:<br />

E ′ I =<br />

E ′ II =<br />

� �<br />

a11a22<br />

− 1<br />

2<br />

2<br />

� a11<br />

√2<br />

��a22 � 1<br />

2<br />

a11<br />

� �<br />

−1 �a22<br />

� 1<br />

2<br />

a11<br />

E ′ IGIc � � (4.11)<br />

τo 3<br />

� (4.12)<br />

+ 2a12 + a66<br />

2a11<br />

+ 2a12 + a66<br />

2a11<br />

�− 1 2<br />

�− 1 2<br />

(4.13)<br />

(4.14)<br />

Under plane stress, a11 = 1<br />

E11 , a22 = 1<br />

E22 , a12 = − ν12<br />

E22 and a66 = 1 . There<strong>for</strong>e,<br />

G12<br />

Eqs. (4.13) and (4.14) can be written <strong>for</strong> plane stress problems as:<br />

E ′ I =<br />

E ′ II = E22<br />

Q<br />

� �<br />

E22<br />

Q<br />

� � 1<br />

E11<br />

2<br />

E22<br />

(4.15)<br />

(4.16)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!