11.02.2013 Views

Computational Methods for Debonding in Composites

Computational Methods for Debonding in Composites

Computational Methods for Debonding in Composites

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

208 Ernest T.Y. Ng and A. Suleman<br />

∆λ has to be positive <strong>for</strong> plastic load<strong>in</strong>g, there<strong>for</strong>e the only choice is ∆e P m = 0,<br />

which implies σm = 0. In this case, we have ∆ f = A∆ē P . But then we have arrived<br />

an undeterm<strong>in</strong>ed <strong>for</strong>m <strong>for</strong> ∆λ which is ∆λ → 0 0 . Thus, the <strong>for</strong>mula ∆λ = 3∆eP m<br />

F ′ is<br />

no longer valid <strong>in</strong> this case. There<strong>for</strong>e, we expect ∆λ is no longer a function of ∆e P m<br />

and hence, ∆λ = ∆λ(∆ē P ). Thus, we have the follow<strong>in</strong>g theorem:<br />

Theorem 10.2. Suppose that σ E m = 0, then we have the follow<strong>in</strong>g <strong>for</strong>m <strong>for</strong> P and<br />

F :<br />

t+∆t t+∆t<br />

P = ∆λ S : t+∆t S − (1 − t+∆t f ) t+∆t ˆσy∆ē P<br />

(10.57)<br />

t+∆t 1t+∆t<br />

F = S :<br />

2<br />

t+∆t t+∆t ˆσ 2<br />

y<br />

S + [2q1<br />

3<br />

t+∆t f ∗ − 1 − (q3 t+∆t f ∗ ) 2 ] (10.58)<br />

Moreover, we have<br />

∆λ = R ∆ēP<br />

(10.59)<br />

t+∆t ˆσy<br />

where<br />

3(1 −<br />

R =<br />

t+∆t f )<br />

2[1 +(q3 t+∆t f ∗ ) 2 − 2q1 t+∆t f ∗ (10.60)<br />

]<br />

�<br />

3q2 Proof. S<strong>in</strong>ceσm = 0, there<strong>for</strong>e cosh<br />

t+∆t σm<br />

2t+∆t �<br />

= 1. Substitute these two relations<br />

ˆσy<br />

<strong>in</strong>to the expressions of P and F of Gurson-Tvergaard model to obta<strong>in</strong> the results.<br />

To show that ∆λ = R ∆ēP<br />

t+∆t , simply set the expressions <strong>for</strong> P and F equal to zero<br />

ˆσy<br />

and comb<strong>in</strong>e the two expressions. That is, we have<br />

t+∆t S : t+∆t S = 2t+∆t ˆσ 2 y<br />

3<br />

[1 +(q3 t+∆t f ∗ ) 2 − 2q1 t+∆t f ∗ ]<br />

follow from the expression F = 0. Then substitute t+∆t S : t+∆t S <strong>in</strong>to the expression<br />

P = 0tosolve<strong>for</strong>∆λ. �<br />

However, if t f = 0andA = 0, then ∆ f = 3∆ePm 1+3∆eP and we have back to von-Mises<br />

m<br />

case and this leads to the follow<strong>in</strong>g corollary of the above theorem:<br />

Corollary 10.1. Suppose that t f = 0,A= 0 and σ E m = 0, then we have the follow<strong>in</strong>g<br />

<strong>for</strong>m <strong>for</strong> P and F :<br />

Moreover, we have<br />

t+∆t P = ∆λ t+∆t S : t+∆t S − t+∆t ˆσy∆ē P<br />

t+∆t 1t+∆t<br />

F = S :<br />

2<br />

t+∆t S + 1 t+∆t ˆσ 2<br />

y<br />

3<br />

∆λ = 3∆ēP<br />

2 t+∆t ˆσy<br />

(10.61)<br />

(10.62)<br />

(10.63)<br />

Proof. The proof is by sett<strong>in</strong>g t+∆t f and t+∆t f ∗ equal to zero <strong>in</strong> the expression<br />

of R. �

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!