11.02.2013 Views

Computational Methods for Debonding in Composites

Computational Methods for Debonding in Composites

Computational Methods for Debonding in Composites

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

10 Elastoplastic Model<strong>in</strong>g of Multi-phase Metal Matrix Composite 211<br />

Table 10.1 Properties table<br />

σ 33 [=σ 22 ] [MPa]<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

JLS PA JL1 JL2 Ll<br />

Em [GPa] 70 73 55.8 68.3 71.8<br />

νm 0.3 0.33 0.32 0.33 0.33<br />

E f [GPa] 450 485 397 490 450<br />

ν f 0.2 0.2 0.2 0.17 0.17<br />

σyv [MPa] 300 220 87.8 250 169<br />

h [GPa] 1,000 370 972 137 463.24<br />

q 0.5 0.3 0.55 0.55 0.39252<br />

c f 0.15 0.20 0.20 0.20 0.06,0.13<br />

Shape PS S S S S<br />

ζ 3 1 1 1 1<br />

Mises<br />

Gurson−0.02<br />

Gurson−0.08<br />

Lee−perfectly bonded<br />

Lee−porous<br />

0<br />

0 1 2 3<br />

ε [=ε ] [10<br />

33 22<br />

4 5 6<br />

−3 ]<br />

Fig. 10.1 Results: Biaxial Load<strong>in</strong>g, Ju and Lee 2000<br />

requires the matrix phase to satisfy the classical plasticity theory. Also, Ju and Lee<br />

proposed an <strong>in</strong>terfacial debond<strong>in</strong>g process which is governed by the mean stress of<br />

the matrix phase while the damage evolution is governed by the Weibull <strong>in</strong>terfacial<br />

strength parameter [9, 18]. Also, they present a comparison with an experimental<br />

study documented by Llorca <strong>in</strong> 1991. We compare our results to both Ju and Lee’s<br />

results (Fig. 10.1) and Llorca’s results (Fig. 10.2).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!