11.02.2013 Views

Computational Methods for Debonding in Composites

Computational Methods for Debonding in Composites

Computational Methods for Debonding in Composites

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

188 N. Zobeiry et al.<br />

displacement (POD) are shown. Localization of the stra<strong>in</strong>s <strong>in</strong>to a zone with a height<br />

of approximately 20.8 mm can be easily identified from this graph as the distance<br />

between the two <strong>in</strong>tersection po<strong>in</strong>ts. These <strong>in</strong>tersection po<strong>in</strong>ts differentiate the zone<br />

<strong>in</strong> which the stra<strong>in</strong>s are <strong>in</strong>creas<strong>in</strong>g (damage localization) from the zones <strong>in</strong> which<br />

the stra<strong>in</strong>s are decreas<strong>in</strong>g (unload<strong>in</strong>g <strong>in</strong> undamaged material). This allows <strong>for</strong> an<br />

estimate of the height of damage without the need <strong>for</strong> time consum<strong>in</strong>g section<strong>in</strong>g.<br />

The height of damage serves as a key parameter <strong>for</strong> determ<strong>in</strong><strong>in</strong>g the size of the zone<br />

used <strong>for</strong> non-local regularization <strong>in</strong> the numerical simulations (see Sect. 9.5.2).<br />

9.4 Model Validation<br />

9.4.1 Simulation of OCT Test<br />

The OCT test that was used <strong>for</strong> characteriz<strong>in</strong>g some of the model parameters was<br />

also used to validate the per<strong>for</strong>mance of CODAM <strong>in</strong> predict<strong>in</strong>g the behaviour of a<br />

composite structure undergo<strong>in</strong>g damage and fracture under tensile load<strong>in</strong>g. F<strong>in</strong>ite<br />

element simulations of the OCT test were carried out us<strong>in</strong>g both the LS-DYNA<br />

and ABAQUS implementations of CODAM. Figure 9.7 compares the predictions<br />

of the applied <strong>for</strong>ce versus crack mouth open<strong>in</strong>g displacement (CMOD) with the<br />

correspond<strong>in</strong>g test results <strong>for</strong> a class of carbon fibre re<strong>in</strong><strong>for</strong>ced plastic (CFRP)<br />

lam<strong>in</strong>ates with a [45/ − 45/02/90/02/ − 45/45]6 layup [18]. In this model, the sublam<strong>in</strong>ate<br />

elastic properties used are: Ex = 75.0 GPa,Ey = 32.0 GPa,νxy = 0.161<br />

and Gxy = 17.1 GPa. Also, the peak stress as measured from a 4 pt bend test is 460<br />

MPa and the fracture energy release rate G f = 80 kJ/m 2 based on the f<strong>in</strong>d<strong>in</strong>gs of<br />

Load (kN)<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

Simplified CODAM <strong>in</strong> ABAQUS Implicit<br />

CODAM <strong>in</strong> LS-DYNA Explicit<br />

Experimental E<br />

results<br />

0<br />

0 0.5 1 1.5 2 2.5 3 3.5 4<br />

CMOD (mm)<br />

Fig. 9.7 Longitud<strong>in</strong>al stra<strong>in</strong> profiles at two different levels of p<strong>in</strong> open<strong>in</strong>g displacement (POD)<br />

along a vertical l<strong>in</strong>e through the damage zone <strong>in</strong> an OCT test specimen us<strong>in</strong>g the image analysis<br />

software, DaVis [12]

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!