11.02.2013 Views

Computational Methods for Debonding in Composites

Computational Methods for Debonding in Composites

Computational Methods for Debonding in Composites

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

13 Effective Stiffness Properties of Textile-Re<strong>in</strong><strong>for</strong>ced <strong>Composites</strong> 273<br />

Fig. 13.8 Plot of the enrichment<br />

function F (ϕ (x)) over<br />

a 2D plane element doma<strong>in</strong><br />

Fig. 13.9 Integration subdoma<strong>in</strong>s<br />

F(x,y)<br />

1<br />

0.5<br />

0<br />

0<br />

0.25<br />

0.5<br />

0.75<br />

x<br />

1<br />

Material 1<br />

Material 2<br />

1.25 0<br />

Integration subdoma<strong>in</strong><br />

divided <strong>in</strong>to ns <strong>in</strong>tegration subdoma<strong>in</strong>s Ω s i apply<strong>in</strong>g DELAUNAY hex-tet subdivision<br />

<strong>in</strong> three dimensions �<br />

dΩ e ns �<br />

⇒<br />

(13.43)<br />

as shown <strong>in</strong> Fig. 13.9.<br />

After the decomposition each subdoma<strong>in</strong> is assigned with the right material properties<br />

and the <strong>in</strong>tegration of the element stiffness matrix is carried out us<strong>in</strong>g standard<br />

GAUSS quadrature rules. F<strong>in</strong>ally, the element stiffness matrix is passed <strong>in</strong>to the<br />

commerical FE-code where the global stiffness matrix is assembled.<br />

When modell<strong>in</strong>g textile-re<strong>in</strong><strong>for</strong>ced composites – ma<strong>in</strong>ly due to the comb<strong>in</strong>ation<br />

of high fibre volume fractions and complex re<strong>in</strong><strong>for</strong>c<strong>in</strong>g architectures – the problem<br />

of branch<strong>in</strong>g material <strong>in</strong>terfaces is observed. As shown <strong>in</strong> Fig. 13.10a the material<br />

<strong>in</strong>terface between warp and weft yarn opens <strong>in</strong>to two yarn-matrix <strong>in</strong>terfaces.<br />

There<strong>for</strong>e, a second new element type called 2X-element is <strong>in</strong>troduced which can<br />

handle two branch<strong>in</strong>g material <strong>in</strong>terfaces <strong>in</strong> a s<strong>in</strong>gle element doma<strong>in</strong>. Numerically<br />

the case of two material <strong>in</strong>terfaces <strong>in</strong> a s<strong>in</strong>gle element is treated by <strong>in</strong>troduc<strong>in</strong>g<br />

another set of additional degrees of freedom bi at nodes whose support is cut by<br />

both <strong>in</strong>terfaces lead<strong>in</strong>g to a further enrichment of the displacement approximation<br />

u X-FEM = ∑ i<br />

Niui +∑ j<br />

∑<br />

i=1<br />

Nja jF1 (ϕ1(x)) +∑ k<br />

dΩ s i<br />

0.5<br />

y<br />

1<br />

1.5<br />

NkbkF2 (ϕ2(x)). (13.44)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!