11.02.2013 Views

Computational Methods for Debonding in Composites

Computational Methods for Debonding in Composites

Computational Methods for Debonding in Composites

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

3 Practical Challenges <strong>in</strong> Formulat<strong>in</strong>g Virtual Tests <strong>for</strong> Structural <strong>Composites</strong> 73<br />

Acknowledgements Brian N. Cox supported by the Army Research Office, Agreement No.<br />

W911NF-05-C-0073. S. Mark Spear<strong>in</strong>g partially funded by a Royal Society-Wolfson Research<br />

Merit Award and EPSRC grant EP/E003427/1.<br />

References<br />

1. Abraham FF (2003) How fast can cracks move? A research adventure <strong>in</strong> materials failure<br />

us<strong>in</strong>g millions of atoms and big computers. Adv Phys 52:727–790<br />

2. Abraham FF, Walkup R, Gao H et al. (2002) Simulat<strong>in</strong>g materials failure by us<strong>in</strong>g up to<br />

one billion atoms and the world’s fastest computer: brittle fracture. Proc Natl Acad Sci USA<br />

99:5777–5782<br />

3. Ashby MF (1992) Physical modell<strong>in</strong>g or materials problems. Mat Sci Technol 8:102–111<br />

4. Bao G, Suo Z (1992) Remarks on crack-bridg<strong>in</strong>g concepts. Appl Mech Rev 24:355–366<br />

5. de Borst R (2003) Numerical aspects of cohesive-zone models. Eng Fract Mech 70:1743–1757<br />

6. Buehler MJ (2006) Nature designs tough collagen: Expla<strong>in</strong><strong>in</strong>g the nanostructure of collagen<br />

fibrils. Proc Natl Acad Sci USA 103:12285–12290<br />

7. Buehler MJ (2006) Large-scale hierarchical model<strong>in</strong>g of nanoscale, natural and biological<br />

materials. J Comput Theor Nanosci 3:603–623<br />

8. Buehler MJ, Gao H (2005) Ultra large scale atomistic simulations of dynamic fracture. In:<br />

Rieth M, Schommers W (eds) Handbook of Theoretical <strong>Computational</strong> Nanotechnology,<br />

Volume X, pp 1–41, American Scientific Publishers Ranch, CA<br />

9. Cai W, Bulatov VV, Chang J et al. (2004) Dislocation core effects on mobility. In: Nabarro<br />

FNR, Hirth JP (eds) Dislocations <strong>in</strong> Solids, Volume 12, Chapter 64, Elsevier, Amsterdam<br />

10. Camanho PP, Dávila CG, P<strong>in</strong>ho ST (2004) Fracture analysis of composite co-cured structural<br />

jo<strong>in</strong>ts us<strong>in</strong>g decohesion elements. Fatigue Fract Eng Mat Struct 27:745–757<br />

11. Carp<strong>in</strong>teri A (ed) (1999) Nonl<strong>in</strong>ear Crack Models <strong>for</strong> Nonmetallic Materials. Kluwer,<br />

Dordrecht, The Netherlands<br />

12. Carroll FE, Mendenhall MH, Traeger RH, Brau C et al. (2003) Pulsed tunable monochromatic<br />

X-ray beams from a compact source: New opportunities. Am J Roentgenol 181:1197–1202<br />

13. Case SW, Reifsnider KL (1999) Mrlife12 theory manual – a strength and life prediction<br />

code <strong>for</strong> lam<strong>in</strong>ated composite materials. Technical report, Materials Response Group, Virg<strong>in</strong>ia<br />

Polytechnic Institute and State University<br />

14. Corigliano A (1993) Formulation, identification and use of <strong>in</strong>terface models <strong>in</strong> the numerical<br />

analysis of composite delam<strong>in</strong>ation. Int J Solids Struct 30:2779–2811<br />

15. Cox BN (1999) Constitutive model <strong>for</strong> a fiber tow bridg<strong>in</strong>g a delam<strong>in</strong>ation crack. Mech<br />

Compos Mat Struct 6:117–138<br />

16. Cox BN (2005) Snubb<strong>in</strong>g effects <strong>in</strong> the pullout of a fibrous rod from a lam<strong>in</strong>ate. Mech Adv<br />

Mat Struct 12:85–98<br />

17. Cox BN, Marshall DB (1991) The determ<strong>in</strong>ation of crack bridg<strong>in</strong>g <strong>for</strong>ces. Int J Fract 49:<br />

159–176<br />

18. Cox BN, Marshall DB (1994) Concepts <strong>for</strong> bridged cracks <strong>in</strong> fracture and fatigue. Acta Metall<br />

Mater 42:341–363<br />

19. Cox BN, Marshall DB (1996) Crack <strong>in</strong>itiation <strong>in</strong> brittle fiber re<strong>in</strong><strong>for</strong>ced lam<strong>in</strong>ates. J Am Ceram<br />

Soc 79:1181–1188<br />

20. Cox BN, Yang QD (2006) In quest of virtual tests <strong>for</strong> structural composites. Science<br />

314:1102–1107<br />

21. Dawood TA, Shenoi RA, Sah<strong>in</strong> M (2007) A procedure to embed fibre Bragg grat<strong>in</strong>g stra<strong>in</strong><br />

sensors <strong>in</strong>to GFRP sandwich structures. Compos Part A 38:217–226<br />

22. Dobashi K, Fukuasawa A, Uesaka M et al. (2005) Design of compact monochromatic tunable<br />

hard X-ray source based on X-band l<strong>in</strong>ac. Jpn J Appl Phys 44:1999–2005<br />

23. Dvorak GJ, Laws N (1987) Analysis of progressive matrix crack<strong>in</strong>g <strong>in</strong> composite lam<strong>in</strong>ates.<br />

II - First ply failure. J Compos Mat 21:309–329

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!