13.02.2013 Views

Karen Bedard and Karl-Heinz Krause

Karen Bedard and Karl-Heinz Krause

Karen Bedard and Karl-Heinz Krause

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

of NADPH oxidase reduce the organ injury in hemorrhagic shock.<br />

Shock 23: 107–114, 2005.<br />

3. Abid MR, Kachra Z, Spokes KC, Aird WC. NADPH oxidase<br />

activity is required for endothelial cell proliferation <strong>and</strong> migration.<br />

FEBS Lett 486: 252–256, 2000.<br />

4. Abo A, Pick E, Hall A, Totty N, Teahan CG, Segal AW. Activation<br />

of the NADPH oxidase involves the small GTP-binding protein<br />

p21rac1. Nature 353: 668–670, 1991.<br />

5. Abramov AY, Canevari L, Duchen MR. Calcium signals induced<br />

by amyloid beta peptide <strong>and</strong> their consequences in neurons <strong>and</strong><br />

astrocytes in culture. Biochim Biophys Acta 1742: 81–87, 2004.<br />

6. Abramov AY, Jacobson J, Wientjes F, Hothersall J, Canevari<br />

L, Duchen MR. Expression <strong>and</strong> modulation of an NADPH oxidase<br />

in mammalian astrocytes. J Neurosci 25: 9176–9184, 2005.<br />

7. Acker H, Dufau E, Huber J, Sylvester D. Indications to an<br />

NADPH oxidase as a possible pO 2 sensor in the rat carotid body.<br />

FEBS Lett 256: 75–78, 1989.<br />

8. Acker T, F<strong>and</strong>rey J, Acker H. The good, the bad <strong>and</strong> the ugly in<br />

oxygen-sensing: ROS, cytochromes <strong>and</strong> prolyl-hydroxylases. Cardiovasc<br />

Res 71: 195–207, 2006.<br />

9. Adachi T, Togashi H, Suzuki A, Kasai S, Ito J, Sugahara K,<br />

Kawata S. NAD(P)H oxidase plays a crucial role in PDGF-induced<br />

proliferation of hepatic stellate cells. Hepatology 41: 1272–1281,<br />

2005.<br />

10. Adachi T, Weisbrod RM, Pimentel DR, Ying J, Sharov VS,<br />

Schoneich C, Cohen RA. S-glutathiolation by peroxynitrite activates<br />

SERCA during arterial relaxation by nitric oxide. Nat Med 10:<br />

1200–1207, 2004.<br />

11. Adler S, Huang H. Oxidant stress in kidneys of spontaneously<br />

hypertensive rats involves both oxidase overexpression <strong>and</strong> loss of<br />

extracellular superoxide dismutase. Am J Physiol Renal Physiol<br />

287: F907–F913, 2004.<br />

12. Agarwal A, Gupta S, Sharma RK. Role of oxidative stress in<br />

female reproduction. Reprod Biol Endocrinol 3: 28, 2005.<br />

13. Agarwal A, Saleh RA, Bedaiwy MA. Role of reactive oxygen<br />

species in the pathophysiology of human reproduction. Fertil Steril<br />

79: 829–843, 2003.<br />

14. Ago T, Kitazono T, Kuroda J, Kumai Y, Kamouchi M, Ooboshi<br />

H, Wakisaka M, Kawahara T, Rokutan K, Ibayashi S, Iida M.<br />

NAD(P)H oxidases in rat basilar arterial endothelial cells. Stroke<br />

36: 1040–1046, 2005.<br />

15. Ago T, Kitazono T, Ooboshi H, Iyama T, Han YH, Takada J,<br />

Wakisaka M, Ibayashi S, Utsumi H, Iida M. Nox4 as the major<br />

catalytic component of an endothelial NAD(P)H oxidase. Circulation<br />

109: 227–233, 2004.<br />

16. Ahluwalia J, Tinker A, Clapp LH, Duchen MR, Abramov AY,<br />

Pope S, Nobles M, Segal AW. The large-conductance Ca 2� -activated<br />

K � channel is essential for innate immunity. Nature 427:<br />

853–858, 2004.<br />

17. Aitken J, Fisher H. Reactive oxygen species generation <strong>and</strong><br />

human spermatozoa: the balance of benefit <strong>and</strong> risk. Bioessays 16:<br />

259–267, 1994.<br />

18. Aitken RJ, Baker MA. Oxidative stress <strong>and</strong> male reproductive<br />

biology. Reprod Fertil Dev 16: 581–588, 2004.<br />

19. Aitken RJ, Buckingham DW, West KM. Reactive oxygen species<br />

<strong>and</strong> human spermatozoa: analysis of the cellular mechanisms involved<br />

in luminol- <strong>and</strong> lucigenin-dependent chemiluminescence.<br />

J Cell Physiol 151: 466–477, 1992.<br />

20. Aitken RJ, Clarkson JS, Fishel S. Generation of reactive oxygen<br />

species, lipid peroxidation, <strong>and</strong> human sperm function. Biol Reprod<br />

41: 183–197, 1989.<br />

21. Aitken RJ, Fisher HM, Fulton N, Gomez E, Knox W, Lewis B,<br />

Irvine S. Reactive oxygen species generation by human spermatozoa<br />

is induced by exogenous NADPH <strong>and</strong> inhibited by the flavoprotein<br />

inhibitors diphenylene iodonium <strong>and</strong> quinacrine. Mol<br />

Reprod Dev 47: 468–482, 1997.<br />

22. Aitken RJ, West KM. Analysis of the relationship between reactive<br />

oxygen species production <strong>and</strong> leucocyte infiltration in fractions<br />

of human semen separated on Percoll gradients. Int J Androl<br />

13: 433–451, 1990.<br />

23. Al-Mehdi AB, Zhao G, Dodia C, Tozawa K, Costa K, Muzykantov<br />

V, Ross C, Blecha F, Dinauer M, Fisher AB. Endothelial<br />

THE NOX FAMILY OF ROS-GENERATING NADPH OXIDASES 289<br />

Physiol Rev VOL 87 JANUARY 2007 www.prv.org<br />

NADPH oxidase as the source of oxidants in lungs exposed to<br />

ischemia or high K � . Circ Res 83: 730–737, 1998.<br />

24. Ambasta RK, Kumar P, Griendling KK, Schmidt HH, Busse R,<br />

Br<strong>and</strong>es RP. Direct interaction of the novel Nox proteins with<br />

p22phox is required for the formation of a functionally active<br />

NADPH oxidase. J Biol Chem 279: 45935–45941, 2004.<br />

25. Ambasta RK, Schreiber JG, Janiszewski M, Busse R, Br<strong>and</strong>es<br />

RP. Noxa1 is a central component of the smooth muscle NADPH<br />

oxidase in mice. Free Radic Biol Med 41: 193–201, 2006.<br />

26. Ambruso DR, Cusack N, Thurman G. NADPH oxidase activity of<br />

neutrophil specific granules: requirements for cytosolic components<br />

<strong>and</strong> evidence of assembly during cell activation. Mol Genet<br />

Metab 81: 313–321, 2004.<br />

27. Ameziane-El-Hassani R, Mor<strong>and</strong> S, Boucher JL, Frapart YM,<br />

Apostolou D, Agn<strong>and</strong>ji D, Gnidehou S, Ohayon R, Noel-Hudson<br />

MS, Francon J, Lalaoui K, Virion A, Dupuy C. Dual oxidase-2<br />

has an intrinsic Ca 2� -dependent H 2O 2-generating activity.<br />

J Biol Chem 280: 30046–30054, 2005.<br />

28. Anrather J, Racchumi G, Iadecola C. NF-kappaB regulates<br />

phagocytic NADPH oxidase by inducing the expression of<br />

gp91phox. J Biol Chem 281: 5657–5667, 2006.<br />

29. Arakawa N, Katsuyama M, Matsuno K, Urao N, Tabuchi Y,<br />

Okigaki M, Matsubara H, Yabe-Nishimura C. Novel transcripts<br />

of NOX1 is regulated by alternative promoters <strong>and</strong> expressed under<br />

phenotypic modulation of vascular smooth muscle cells. Biochem<br />

J. In press.<br />

30. Arbiser JL, Petros J, Klafter R, Govindajaran B, McLaughlin<br />

ER, Brown LF, Cohen C, Moses M, Kilroy S, Arnold RS,<br />

Lambeth JD. Reactive oxygen generated by Nox1 triggers the<br />

angiogenic switch. Proc Natl Acad Sci USA 99: 715–720, 2002.<br />

31. Archer SL, Huang J, Henry T, Peterson D, Weir EK. A redoxbased<br />

O 2 sensor in rat pulmonary vasculature. Circ Res 73: 1100–<br />

1112, 1993.<br />

32. Archer SL, Reeve HL, Michelakis E, Puttagunta L, Waite R,<br />

Nelson DP, Dinauer MC, Weir EK. O 2 sensing is preserved in<br />

mice lacking the gp91 phox subunit of NADPH oxidase. Proc Natl<br />

Acad Sci USA 96: 7944–7949, 1999.<br />

33. Arias AA, Dinauer MC, Ding J, Matute JD, Patino PJ. Expression<br />

<strong>and</strong> activity of polymorphisms in the 67-kDa protein of the<br />

NADPH oxidase system. Biomedica 24: 262–272, 2004.<br />

34. Armstrong JS, Bivalacqua TJ, Chamulitrat W, Sikka S, Hellstrom<br />

WJ. A comparison of the NADPH oxidase in human sperm<br />

<strong>and</strong> white blood cells. Int J Androl 25: 223–229, 2002.<br />

35. Arnold RS, Shi J, Murad E, Whalen AM, Sun CQ, Polavarapu<br />

R, Parthasarathy S, Petros JA, Lambeth JD. Hydrogen peroxide<br />

mediates the cell growth <strong>and</strong> transformation caused by the<br />

mitogenic oxidase Nox1. Proc Natl Acad Sci USA 98: 5550–5555,<br />

2001.<br />

36. Arteel GE. Oxidants <strong>and</strong> antioxidants in alcohol-induced liver<br />

disease. Gastroenterology 124: 778–790, 2003.<br />

37. Asaba K, Tojo A, Onozato ML, Goto A, Quinn MT, Fujita T,<br />

Wilcox CS. Effects of NADPH oxidase inhibitor in diabetic nephropathy.<br />

Kidney Int 67: 1890–1898, 2005.<br />

38. Aten RF, Kolodecik TR, Rossi MJ, Debusscher C, Behrman<br />

HR. Prostagl<strong>and</strong>in F2alpha treatment in vivo, but not in vitro,<br />

stimulates protein kinase C-activated superoxide production by<br />

nonsteroidogenic cells of the rat corpus luteum. Biol Reprod 59:<br />

1069–1076, 1998.<br />

39. Atkins CM, Chen SJ, Klann E, Sweatt JD. Increased phosphorylation<br />

of myelin basic protein during hippocampal long-term potentiation.<br />

J Neurochem 68: 1960–1967, 1997.<br />

40. Atkins CM, Sweatt JD. Reactive oxygen species mediate activitydependent<br />

neuron-glia signaling in output fibers of the hippocampus.<br />

J Neurosci 19: 7241–7248, 1999.<br />

41. Azumi H, Inoue N, Ohashi Y, Terashima M, Mori T, Fujita H,<br />

Awano K, Kobayashi K, Maeda K, Hata K, Shinke T, Kobayashi<br />

S, Hirata K, Kawashima S, Itabe H, Hayashi Y, Imajoh-<br />

Ohmi S, Itoh H, Yokoyama M. Superoxide generation in directional<br />

coronary atherectomy specimens of patients with angina<br />

pectoris: important role of NAD(P)H oxidase. Arterioscler Thromb<br />

Vasc Biol 22: 1838–1844, 2002.<br />

Downloaded from<br />

physrev.physiology.org on February 2, 2010

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!