13.02.2013 Views

Karen Bedard and Karl-Heinz Krause

Karen Bedard and Karl-Heinz Krause

Karen Bedard and Karl-Heinz Krause

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

415. Ishikawa Y, Hirai K, Ogawa K. Cytochemical localization of<br />

hydrogen peroxide production in the rat uterus. J Histochem Cytochem<br />

32: 674–676, 1984.<br />

416. Ito D, Murata M, Watanabe K, Yoshida T, Saito I, Tanahashi<br />

N, Fukuuchi Y. C242T polymorphism of NADPH oxidase p22<br />

PHOX gene <strong>and</strong> ischemic cerebrovascular disease in the Japanese<br />

population. Stroke 31: 936–939, 2000.<br />

417. Itzkowitz SH, Yio X. Inflammation <strong>and</strong> cancer. IV. Colorectal<br />

cancer in inflammatory bowel disease: the role of inflammation.<br />

Am J Physiol Gastrointest Liver Physiol 287: G7–G17, 2004.<br />

418. Iuliano L, Pedersen JZ, Pratico D, Rotilio G, Violi F. Role of<br />

hydroxyl radicals in the activation of human platelets. Eur J Biochem<br />

221: 695–704, 1994.<br />

419. Iyer GYN, Islam DMF, Quastel JH. Biochemical aspects of<br />

phagocytosis. Nature 192: 535–542, 1961.<br />

420. Jackson SH, Devadas S, Kwon J, Pinto LA, Williams MS. T<br />

cells express a phagocyte-type NADPH oxidase that is activated<br />

after T cell receptor stimulation. Nat Immunol 5: 818–827, 2004.<br />

421. Jackson SH, Gallin JI, Holl<strong>and</strong> SM. The p47phox mouse knockout<br />

model of chronic granulomatous disease. J Exp Med 182:<br />

751–758, 1995.<br />

422. Jacobsen BM, Skalnik DG. YY1 binds five cis-elements <strong>and</strong><br />

trans-activates the myeloid cell-restricted gp91(phox) promoter.<br />

J Biol Chem 274: 29984–29993, 1999.<br />

423. Jaimes EA, Tian RX, Pearse D, Raij L. Up-regulation of glomerular<br />

COX-2 by angiotensin II: role of reactive oxygen species.<br />

Kidney Int 68: 2143–2153, 2005.<br />

424. Janiszewski M, Do Carmo AO, Pedro MA, Silva E, Knobel E,<br />

Laurindo FR. Platelet-derived exosomes of septic individuals possess<br />

proapoptotic NAD(P)H oxidase activity: a novel vascular redox<br />

pathway. Crit Care Med 32: 818–825, 2004.<br />

425. Janiszewski M, Lopes LR, Carmo AO, Pedro MA, Br<strong>and</strong>es RP,<br />

Santos CX, Laurindo FR. Regulation of NAD(P)H oxidase by<br />

associated protein disulfide isomerase in vascular smooth muscle<br />

cells. J Biol Chem 280: 40813–40819, 2005.<br />

426. Javesghani D, Magder SA, Barreiro E, Quinn MT, Hussain SN.<br />

Molecular characterization of a superoxide-generating NAD(P)H<br />

oxidase in the ventilatory muscles. Am J Respir Crit Care Med 165:<br />

412–418, 2002.<br />

427. Jesaitis AJ, Buescher ES, Harrison D, Quinn MT, Parkos CA,<br />

Livesey S, Linner J. Ultrastructural localization of cytochrome b<br />

in the membranes of resting <strong>and</strong> phagocytosing human granulocytes.<br />

J Clin Invest 85: 821–835, 1990.<br />

428. Jiang Q, Griffin DA, Barofsky DF, Hurst JK. Intraphagosomal<br />

chlorination dynamics <strong>and</strong> yields determined using unique fluorescent<br />

bacterial mimics. Chem Res Toxicol 10: 1080–1089, 1997.<br />

429. Johar S, Cave AC, Narayanapanicker A, Grieve DJ, Shah AM.<br />

Aldosterone mediates angiotensin II-induced interstitial cardiac<br />

fibrosis via a Nox2-containing NADPH oxidase. FASEB J 20: 1546–<br />

1548, 2006.<br />

430. Jolly SR, Kane WJ, Hook BG, Abrams GD, Kunkel SL, Lucchesi<br />

BR. Reduction of myocardial infarct size by neutrophil depletion:<br />

effect of duration of occlusion. Am Heart J 112: 682–690,<br />

1986.<br />

431. Jones OTG, Wood JD. Oxidant production by human B lymphocytes:<br />

detection of activity <strong>and</strong> identification of components involved.<br />

Methods 9: 619–627, 1996.<br />

432. Jones RD, Morice AH. Hydrogen peroxide—an intracellular signal<br />

in the pulmonary circulation: involvement in hypoxic pulmonary<br />

vasoconstriction. Pharmacol Ther 88: 153–161, 2000.<br />

433. Jones SA, Hancock JT, Jones OT, Neubauer A, Topley N. The<br />

expression of NADPH oxidase components in human glomerular<br />

mesangial cells: detection of protein <strong>and</strong> mRNA for p47phox,<br />

p67phox, p22phox. J Am Soc Nephrol 5: 1483–1491, 1995.<br />

434. Jones SA, O’Donnell VB, Wood JD, Broughton JP, Hughes EJ,<br />

Jones OT. Expression of phagocyte NADPH oxidase components<br />

in human endothelial cells. Am J Physiol Heart Circ Physiol 271:<br />

H1626–H1634, 1996.<br />

435. Kalinina N, Agrotis A, Tararak E, Antropova Y, Kanellakis P,<br />

Ilyinskaya O, Quinn MT, Smirnov V, Bobik A. Cytochrome<br />

b558-dependent NAD(P)H oxidase-phox units in smooth muscle<br />

<strong>and</strong> macrophages of atherosclerotic lesions. Arterioscler Thromb<br />

Vasc Biol 22: 2037–2043, 2002.<br />

THE NOX FAMILY OF ROS-GENERATING NADPH OXIDASES 299<br />

Physiol Rev VOL 87 JANUARY 2007 www.prv.org<br />

436. Kalsi JK, Clay K, Rickard D, Hall ND. Suppressive effects of a<br />

novel antioxidant compound on human T cell functions in vitro.<br />

Agents Actions 39: C110–112, 1993.<br />

437. Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M.<br />

Reactive oxygen species promote TNFalpha-induced death <strong>and</strong><br />

sustained JNK activation by inhibiting MAP kinase phosphatases.<br />

Cell 120: 649–661, 2005.<br />

438. Kamsler A, Segal M. Hydrogen peroxide as a diffusible signal<br />

molecule in synaptic plasticity. Mol Neurobiol 29: 167–178, 2004.<br />

439. <strong>Karl</strong>sson A, Dahlgren C. Assembly <strong>and</strong> activation of the neutrophil<br />

NADPH oxidase in granule membranes. Antioxid Redox Signal<br />

4: 49–60, 2002.<br />

440. Kassim SY, Fu X, Liles WC, Shapiro SD, Parks WC, Heinecke<br />

JW. NADPH oxidase restrains the matrix metalloproteinase activity<br />

of macrophages. J Biol Chem 280: 30201–30205, 2005.<br />

441. Katsuyama M, Fan C, Yabe-Nishimura C. NADPH oxidase is<br />

involved in prostagl<strong>and</strong>in F2alpha-induced hypertrophy of vascular<br />

smooth muscle cells: induction of NOX1 by PGF2alpha. J Biol<br />

Chem 277: 13438–13442, 2002.<br />

442. Kaul P, Biagioli MC, Singh I, Turner RB. Rhinovirus-induced<br />

oxidative stress <strong>and</strong> interleukin-8 elaboration involves p47-phox<br />

but is independent of attachment to intercellular adhesion molecule-1<br />

<strong>and</strong> viral replication. J Infect Dis 181: 1885–1890, 2000.<br />

443. Kawahara T, Kohjima M, Kuwano Y, Mino H, Teshima-Kondo<br />

S, Takeya R, Tsunawaki S, Wada A, Sumimoto H, Rokutan K.<br />

Helicobacter pylori lipopolysaccharide activates Rac1 <strong>and</strong> transcription<br />

of NADPH oxidase Nox1 <strong>and</strong> its organizer NOXO1 in<br />

guinea pig gastric mucosal cells. Am J Physiol Cell Physiol 288:<br />

C450–C457, 2005.<br />

444. Kawahara T, Kuwano Y, Teshima-Kondo S, Kawai T, Nikawa<br />

T, Kishi K, Rokutan K. Toll-like receptor 4 regulates gastric pit<br />

cell responses to Helicobacter pylori infection. J Med Invest 48:<br />

190–197, 2001.<br />

445. Kawahara T, Kuwano Y, Teshima-Kondo S, Takeya R, Sumimoto<br />

H, Kishi K, Tsunawaki S, Hirayama T, Rokutan K. Role<br />

of nicotinamide adenine dinucleotide phosphate oxidase 1 in oxidative<br />

burst response to Toll-like receptor 5 signaling in large<br />

intestinal epithelial cells. J Immunol 172: 3051–3058, 2004.<br />

446. Kawahara T, Ritsick D, Cheng G, Lambeth JD. Point mutations<br />

in the proline-rich region of p22phox are dominant inhibitors of<br />

Nox1- <strong>and</strong> Nox2-dependent reactive oxygen generation. J Biol<br />

Chem 280: 31859–31869, 2005.<br />

447. Kawahara T, Teshima S, Oka A, Sugiyama T, Kishi K, Rokutan<br />

K. Type I Helicobacter pylori lipopolysaccharide stimulates tolllike<br />

receptor 4 <strong>and</strong> activates mitogen oxidase 1 in gastric pit cells.<br />

Infect Immun 69: 4382–4389, 2001.<br />

448. Kawakami M, Okabe E. Superoxide anion radical-triggered Ca 2�<br />

release from cardiac sarcoplasmic reticulum through ryanodine<br />

receptor Ca 2� channel. Mol Pharmacol 53: 497–503, 1998.<br />

449. Kazemian P, Stephenson R, Yeger H, Cutz E. Respiratory control<br />

in neonatal mice with NADPH oxidase deficiency. Respir<br />

Physiol 126: 89–101, 2001.<br />

450. Keenan JI, Peterson RA Jr, Hampton MB. NADPH oxidase<br />

involvement in the pathology of Helicobacter pylori infection. Free<br />

Radic Biol Med 38: 1188–1196, 2005.<br />

451. Kessopoulou E, Tomlinson MJ, Barratt CL, Bolton AE, Cooke<br />

ID. Origin of reactive oxygen species in human semen: spermatozoa<br />

or leucocytes? J Reprod Fertil 94: 463–470, 1992.<br />

452. Key LL Jr, Ries WL, Taylor RG, Hays BD, Pitzer BL. Oxygen<br />

derived free radicals in osteoclasts: the specificity <strong>and</strong> location of<br />

the nitroblue tetrazolium reaction. Bone 11: 115–119, 1990.<br />

453. Key LL, Wolf WC, Gundberg CM, Ries WL. Superoxide <strong>and</strong> bone<br />

resorption. Bone 15: 431–436, 1994.<br />

454. Kikuchi H, Hikage M, Miyashita H, Fukumoto M. NADPH<br />

oxidase subunit, gp91(phox) homologue, preferentially expressed<br />

in human colon epithelial cells. Gene 254: 237–243, 2000.<br />

455. Killilea DW, Hester R, Balczon R, Babal P, Gillespie MN. Free<br />

radical production in hypoxic pulmonary artery smooth muscle<br />

cells. Am J Physiol Lung Cell Mol Physiol 279: L408–L412, 2000.<br />

456. Kim SH, Won SJ, Sohn S, Kwon HJ, Lee JY, Park JH, Gwag BJ.<br />

Brain-derived neurotrophic factor can act as a pronecrotic factor<br />

through transcriptional <strong>and</strong> translational activation of NADPH oxidase.<br />

J Cell Biol 159: 821–831, 2002.<br />

Downloaded from<br />

physrev.physiology.org<br />

on February 2, 2010

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!