13.02.2013 Views

Karen Bedard and Karl-Heinz Krause

Karen Bedard and Karl-Heinz Krause

Karen Bedard and Karl-Heinz Krause

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

292 KAREN BEDARD AND KARL-HEINZ KRAUSE<br />

oxide production, salt sensitivity <strong>and</strong> cardiovascular risk factors in<br />

Hispanics. J Hum Hypertens. In press.<br />

130. Castier Y, Br<strong>and</strong>es RP, Leseche G, Tedgui A, Lehoux S.<br />

p47phox-dependent NADPH oxidase regulates flow-induced vascular<br />

remodeling. Circ Res 97: 533–540, 2005.<br />

131. Ceolotto G, Bevilacqua M, Papparella I, Baritono E, Franco<br />

L, Corvaja C, Mazzoni M, Semplicini A, Avogaro A. Insulin<br />

generates free radicals by an NAD(P)H, phosphatidylinositol 3�kinase-dependent<br />

mechanism in human skin fibroblasts ex vivo.<br />

Diabetes 53: 1344–1351, 2004.<br />

132. Chabrashvili T, Tojo A, Onozato ML, Kitiyakara C, Quinn MT,<br />

Fujita T, Welch WJ, Wilcox CS. Expression <strong>and</strong> cellular localization<br />

of classic NADPH oxidase subunits in the spontaneously<br />

hypertensive rat kidney. Hypertension 39: 269–274, 2002.<br />

133. Chamseddine AH, Miller JFJ. gp91phox Contributes to NADPH<br />

oxidase activity in aortic fibroblasts, but not smooth muscle cells.<br />

Am J Physiol Heart Circ Physiol 285: H2284–H2289, 2003.<br />

134. Chamulitrat W, Schmidt R, Tomakidi P, Stremmel W, Chunglok<br />

W, Kawahara T, Rokutan K. Association of gp91phox homolog<br />

Nox1 with anchorage-independent growth <strong>and</strong> MAP kinaseactivation<br />

of transformed human keratinocytes. Oncogene 22:<br />

6045–6053, 2003.<br />

135. Chamulitrat W, Stremmel W, Kawahara T, Rokutan K, Fujii<br />

H, Wingler K, Schmidt HH, Schmidt R. A constitutive NADPH<br />

oxidase-like system containing gp91phox homologs in human keratinocytes.<br />

J Invest Dermatol 122: 1000–1009, 2004.<br />

136. Ch<strong>and</strong>el NS, McClintock DS, Feliciano CE, Wood TM, Melendez<br />

JA, Rodriguez AM, Schumacker PT. Reactive oxygen species<br />

generated at mitochondrial complex III stabilize hypoxia-inducible<br />

factor-1alpha during hypoxia: a mechanism of O 2 sensing.<br />

J Biol Chem 275: 25130–25138, 2000.<br />

137. Channon KM. Oxidative stress <strong>and</strong> coronary plaque stability. Arterioscler<br />

Thromb Vasc Biol 22: 1751–1752, 2002.<br />

138. Chanock SJ, Faust LR, Barrett D, Bizal C, Maly FE, Newburger<br />

PE, Ruedi JM, Smith RM, Babior BM. O 2 � production by<br />

B lymphocytes lacking the respiratory burst oxidase subunit<br />

p47phox after transfection with an expression vector containing a<br />

p47phox cDNA. Proc Natl Acad Sci USA 89: 10174–10177, 1992.<br />

139. Chapman KE, Sinclair SE, Zhuang D, Hassid A, Desai LP,<br />

Waters CM. Cyclic mechanical strain increases reactive oxygen<br />

species production in pulmonary epithelial cells. Am J Physiol<br />

Lung Cell Mol Physiol 289: L834–L841, 2005.<br />

140. Chaube SK, Prasad PV, Thakur SC, Shrivastav TG. Hydrogen<br />

peroxide modulates meiotic cell cycle <strong>and</strong> induces morphological<br />

features characteristic of apoptosis in rat oocytes cultured in vitro.<br />

Apoptosis 10: 863–874, 2005.<br />

141. Chen JX, Zeng H, Lawrence ML, Blackwell TS, Meyrick B.<br />

Angiopoietin-1-induced angiogenesis is modulated by endothelial<br />

NADPH oxidase. Am J Physiol Heart Circ Physiol 291: H1563–<br />

H1572, 2006.<br />

142. Chen Z, Keaney JF Jr, Schulz E, Levison B, Shan L, Sakuma<br />

M, Zhang X, Shi C, Hazen SL, Simon DI. Decreased neointimal<br />

formation in Nox2-deficient mice reveals a direct role for NADPH<br />

oxidase in the response to arterial injury. Proc Natl Acad Sci USA<br />

101: 13014–13019, 2004.<br />

143. Cheng G, Cao Z, Xu X, Meir EG, Lambeth JD. Homologs of<br />

gp91phox: cloning <strong>and</strong> tissue expression of Nox3, Nox4, Nox5.<br />

Gene 269: 131–140, 2001.<br />

144. Cheng G, Diebold BA, Hughes Y, Lambeth JD. Nox1-dependent<br />

reactive oxygen generation is regulated by Rac1. J Biol Chem. In<br />

press.<br />

145. Cheng G, Lambeth JD. Alternative mRNA splice forms of NOXO1:<br />

differential tissue expression <strong>and</strong> regulation of Nox1 <strong>and</strong> Nox3.<br />

Gene 356: 118–126, 2005.<br />

146. Cheng G, Lambeth JD. NOXO1, regulation of lipid binding, localization,<br />

activation of Nox1 by the Phox homology (PX) domain.<br />

J Biol Chem 279: 4737–4742, 2004.<br />

147. Cheng G, Ritsick D, Lambeth JD. Nox3 regulation by NOXO1,<br />

p47phox, p67phox. J Biol Chem 279: 34250–34255, 2004.<br />

148. Cheranov SY, Jaggar JH. TNF-alpha dilates cerebral arteries via<br />

NAD(P)H oxidase-dependent Ca 2� spark activation. Am J Physiol<br />

Cell Physiol 290: C964–C971, 2006.<br />

Physiol Rev VOL 87 JANUARY 2007 www.prv.org<br />

149. Chiarugi P. PTPs versus PTKs: the redox side of the coin. Free<br />

Radic Res 39: 353–364, 2005.<br />

150. Chiu C, Maddock DA, Zhang Q, Souza KP, Townsend AR, Wan<br />

Y. TGF-beta-induced p38 activation is mediated by Rac1-regulated<br />

generation of reactive oxygen species in cultured human keratinocytes.<br />

Int J Mol Med 8: 251–255, 2001.<br />

151. Choi JW, Shin CY, Yoo BK, Choi MS, Lee WJ, Han BH, Kim<br />

WK, Kim HC, Ko KH. Glucose deprivation increases hydrogen<br />

peroxide level in immunostimulated rat primary astrocytes. J Neurosci<br />

Res 75: 722–731, 2004.<br />

152. Choi SH, Lee da Y, Kim SU, Jin BK. Thrombin-induced oxidative<br />

stress contributes to the death of hippocampal neurons in vivo: role<br />

of microglial NADPH oxidase. J Neurosci 25: 4082–4090, 2005.<br />

153. Chong IW, Lin SR, Hwang JJ, Huang MS, Wang TH, Tsai MS,<br />

Hou JJ, Paulauskis JD. Expression <strong>and</strong> regulation of macrophage<br />

inflammatory protein-2 gene by vanadium in mouse macrophages.<br />

Inflammation 24: 127–139, 2000.<br />

154. Chowdhury AK, Watkins T, Parin<strong>and</strong>i NL, Saatian B, Kleinberg<br />

ME, Usatyuk PV, Natarajan V. Src-mediated tyrosine phosphorylation<br />

of p47phox in hyperoxia-induced activation of NADPH<br />

oxidase <strong>and</strong> generation of reactive oxygen species in lung endothelial<br />

cells. J Biol Chem 280: 20700–20711, 2005.<br />

155. Cifuentes ME, Pagano PJ. Targeting reactive oxygen species in<br />

hypertension. Curr Opin Nephrol Hypertens 15: 179–186, 2006.<br />

156. Cifuentes ME, Rey FE, Carretero OA, Pagano PJ. Upregulation<br />

of p67(phox) <strong>and</strong> gp91(phox) in aortas from angiotensin II-infused<br />

mice. Am J Physiol Heart Circ Physiol 279: H2234–H2240, 2000.<br />

157. Clark RA. Activation of the neutrophil respiratory burst oxidase.<br />

J Infect Dis 179: S309–S317, 1999.<br />

158. Clark RA. Oxidative inactivation of pneumolysin by the myeloperoxidase<br />

system <strong>and</strong> stimulated human neutrophils. J Immunol 136:<br />

4617–4622, 1986.<br />

159. Clark RA, Epperson TK, Valente AJ. Mechanisms of activation<br />

of NADPH oxidases. Jpn J Infect Dis 57: S22–S23, 2004.<br />

160. Clark RA, Leidal KG, Pearson DW, Nauseef WM. NADPH oxidase<br />

of human neutrophils. Subcellular localization <strong>and</strong> characterization<br />

of an arachidonate-activatable superoxide-generating system.<br />

J Biol Chem 262: 4065–4074, 1987.<br />

161. Clark RA, Leidal KG, Taichman NS. Oxidative inactivation of<br />

Actinobacillus actinomycetemcomitans leukotoxin by the neutrophil<br />

myeloperoxidase system. Infect Immun 53: 252–256, 1986.<br />

162. Clark RA, Valente AJ. Nuclear factor kappa B activation by<br />

NADPH oxidases. Mech Ageing Dev 125: 799–810, 2004.<br />

163. Clark RA, Volpp BD, Leidal KG, Nauseef WM. Two cytosolic<br />

components of the human neutrophil respiratory burst oxidase<br />

translocate to the plasma membrane during cell activation. J Clin<br />

Invest 85: 714–721, 1990.<br />

164. Clement MV, Stamenkovic I. Superoxide anion is a natural inhibitor<br />

of FAS-mediated cell death. EMBO J 15: 216–225, 1996.<br />

165. Clerici WJ, Hensley K, DiMartino DL, Butterfield DA. Direct<br />

detection of ototoxicant-induced reactive oxygen species generation<br />

in cochlear explants. Hear Res 98: 116–124, 1996.<br />

166. Clutton P, Miermont A, Freedman JE. Regulation of endogenous<br />

reactive oxygen species in platelets can reverse aggregation.<br />

Arterioscler Thromb Vasc Biol 24: 187–192, 2004.<br />

167. Cobbs CS, Malech HL, Leto TL, Freeman SM, Blaese RM,<br />

Gallin JI, Lomax KJ. Retroviral expression of recombinant<br />

p47phox protein by Epstein-Barr virus-transformed B lymphocytes<br />

from a patient with autosomal chronic granulomatous disease.<br />

Blood 79: 1829–1835, 1992.<br />

168. Colas C, Ortiz de Montellano PR. Autocatalytic radical reactions<br />

in physiological prosthetic heme modification. Chem Rev 103:<br />

2305–2332, 2003.<br />

169. Colavitti R, Finkel T. Reactive oxygen species as mediators of<br />

cellular senescence. IUBMB Life 57: 277–281, 2005.<br />

170. Colston JT, de la Rosa SD, Strader JR, Anderson MA, Freeman<br />

GL. H 2O 2 activates Nox4 through PLA 2-dependent arachidonic<br />

acid production in adult cardiac fibroblasts. FEBS Lett 579:<br />

2533–2540, 2005.<br />

171. Coussens LM, Werb Z. Inflammation <strong>and</strong> cancer. Nature 420:<br />

860–867, 2002.<br />

Downloaded from<br />

physrev.physiology.org on February 2, 2010

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!