13.02.2013 Views

Karen Bedard and Karl-Heinz Krause

Karen Bedard and Karl-Heinz Krause

Karen Bedard and Karl-Heinz Krause

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

310 KAREN BEDARD AND KARL-HEINZ KRAUSE<br />

cyte depletion at the onset of diabetic nephropathy. Diabetes 55:<br />

225–233, 2006.<br />

850. Suzuki S, Kumatori A, Haagen IA, Fujii Y, Sadat MA, Jun HL,<br />

Tsuji Y, Roos D, Nakamura M. PU1 as an essential activator for<br />

the expression of gp91(phox) gene in human peripheral neutrophils,<br />

monocytes, B lymphocytes. Proc Natl Acad Sci USA 95:<br />

6085–6090, 1998.<br />

851. Suzuki Y, Ono Y. Involvement of reactive oxygen species produced<br />

via NADPH oxidase in tyrosine phosphorylation in human B<strong>and</strong><br />

T-lineage lymphoid cells. Biochem Biophys Res Commun 255:<br />

262–267, 1999.<br />

852. Suzuki Y, Yoshimaru T, Inoue T, Niide O, Ra C. Role of oxidants<br />

in mast cell activation. Chem Immunol Allergy 87: 32–42,<br />

2005.<br />

853. Suzuki YJ, Cleemann L, Abernethy DR, Morad M. Glutathione<br />

is a cofactor for H 2O 2-mediated stimulation of Ca 2� -induced Ca 2�<br />

release in cardiac myocytes. Free Radical Biol Med 24: 318–325,<br />

1998.<br />

854. Szanto I, Rubbia-Br<strong>and</strong>t L, Kiss P, Steger K, Banfi B, Kovari<br />

E, Herrmann F, Hadengue A, <strong>Krause</strong> KH. Expression of NOX1,<br />

a superoxide-generating NADPH oxidase, in colon cancer <strong>and</strong> inflammatory<br />

bowel disease. J Pathol 207: 164–176, 2005.<br />

855. Szatrowski TP, Nathan CF. Production of large amounts of<br />

hydrogen peroxide by human tumor cells. Cancer Res 51: 794–798,<br />

1991.<br />

856. Szocs K, Lassegue B, Sorescu D, Hilenski LL, Valppu L, Couse<br />

TL, Wilcox JN, Quinn MT, Lambeth JD, Griendling KK. Upregulation<br />

of Nox-based NAD(P)H oxidases in restenosis after<br />

carotid injury. Arterioscler Thromb Vasc Biol 22: 21–27, 2002.<br />

857. Takeya R, Ueno N, Kami K, Taura M, Kohjima M, Izaki T,<br />

Nunoi H, Sumimoto H. Novel human homologues of p47phox <strong>and</strong><br />

p67phox participate in activation of superoxide-producing NADPH<br />

oxidases. J Biol Chem 278: 25234–25246, 2003.<br />

858. Takumida M, Anniko M. Simultaneous detection of both nitric<br />

oxide <strong>and</strong> reactive oxygen species in guinea pig vestibular sensory<br />

cells. ORL J Otorhinolaryngol Relat Spec 64: 143–147, 2002.<br />

859. Tam NN, Gao Y, Leung YK, Ho SM. Androgenic regulation of<br />

oxidative stress in the rat prostate: involvement of NAD(P)H oxidases<br />

<strong>and</strong> antioxidant defense machinery during prostatic involution<br />

<strong>and</strong> regrowth. Am J Pathol 163: 2513–2522, 2003.<br />

860. Tammariello SP, Quinn MT, Estus S. NADPH oxidase contributes<br />

directly to oxidative stress <strong>and</strong> apoptosis in nerve growth<br />

factor-deprived sympathetic neurons. J Neurosci 20: RC53, 2000.<br />

861. Tanaka Y, Gleason CE, Tran PO, Harmon JS, Robertson RP.<br />

Prevention of glucose toxicity in HIT-T15 cells <strong>and</strong> Zucker diabetic<br />

fatty rats by antioxidants. Proc Natl Acad Sci USA 96: 10857–10862,<br />

1999.<br />

862. Tang XD, Santarelli LC, Heinemann SH, Hoshi T. Metabolic<br />

regulation of potassium channels. Annu Rev Physiol 66: 131–159,<br />

2004.<br />

863. Taniyama Y, Hitomi H, Shah A, Alex<strong>and</strong>er RW, Griendling KK.<br />

Mechanisms of reactive oxygen species-dependent downregulation<br />

of insulin receptor substrate-1 by angiotensin II. Arterioscler<br />

Thromb Vasc Biol 25: 1142–1147, 2005.<br />

864. Taylor RM, Burritt JB, Baniulis D, Foubert TR, Lord CI,<br />

Dinauer MC, Parkos CA, Jesaitis AJ. Site-specific inhibitors of<br />

NADPH oxidase activity <strong>and</strong> structural probes of flavocytochrome<br />

b: characterization of six monoclonal antibodies to the p22phox<br />

subunit. J Immunol 173: 7349–7357, 2004.<br />

865. Teahan C, Rowe P, Parker P, Totty N, Segal AW. The X-linked<br />

chronic granulomatous disease gene codes for the beta-chain of<br />

cytochrome b-245. Nature 327: 720–721, 1987.<br />

866. Tejada-Simon MV, Serrano F, Villasana LE, Kanterewicz BI,<br />

Wu GY, Quinn MT, Klann E. Synaptic localization of a functional<br />

NADPH oxidase in the mouse hippocampus. Mol Cell Neurosci 29:<br />

97–106, 2005.<br />

867. Ten J, Vendrell FJ, Cano A, Tarin JJ. Dietary antioxidant supplementation<br />

did not affect declining sperm function with age in<br />

the mouse but did increase head abnormalities <strong>and</strong> reduced sperm<br />

production. Reprod Nutr Dev 37: 481–492, 1997.<br />

868. Teshima S, Kutsumi H, Kawahara T, Kishi K, Rokutan K.<br />

Regulation of growth <strong>and</strong> apoptosis of cultured guinea pig gastric<br />

Physiol Rev VOL 87 JANUARY 2007 www.prv.org<br />

mucosal cells by mitogenic oxidase 1. Am J Physiol Gastrointest<br />

Liver Physiol 279: G1169–G1176, 2000.<br />

869. Teshima S, Rokutan K, Nikawa T, Kishi K. Guinea pig gastric<br />

mucosal cells produce abundant superoxide anion through an<br />

NADPH oxidase-like system. Gastroenterology 115: 1186–1196,<br />

1998.<br />

870. Teshima S, Tsunawaki S, Rokutan K. Helicobacter pylori lipopolysaccharide<br />

enhances the expression of NADPH oxidase components<br />

in cultured guinea pig gastric mucosal cells. FEBS Lett 452:<br />

243–246, 1999.<br />

871. Teufelhofer O, Parzefall W, Kainzbauer E, Ferk F, Freiler C,<br />

Knasmuller S, Elbling L, Thurman R, Schulte-Hermann R.<br />

Superoxide generation from Kupffer cells contributes to hepatocarcinogenesis:<br />

studies on NADPH oxidase knockout mice. Carcinogenesis<br />

26: 319–329, 2005.<br />

872. Thalmann R, Ignatova E, Kachar B, Ornitz DM, Thalmann I.<br />

Development <strong>and</strong> maintenance of otoconia: biochemical considerations.<br />

Ann NY Acad Sci 942: 162–178, 2001.<br />

873. Thannickal VJ, Fanburg BL. Activation of an H 2O 2-generating<br />

NADH oxidase in human lung fibroblasts by transforming growth<br />

factor beta 1. J Biol Chem 270: 30334–30338, 1995.<br />

874. Thannickal VJ, Fanburg BL. Reactive oxygen species in cell<br />

signaling. Am J Physiol Lung Cell Mol Physiol 279: L1005–L1028,<br />

2000.<br />

875. Thiels E, Klann E. Hippocampal memory <strong>and</strong> plasticity in superoxide<br />

dismutase mutant mice. Physiol Behav 77: 601–605, 2002.<br />

876. Thiels E, Urban NN, Gonzalez-Burgos GR, Kanterewicz BI,<br />

Barrionuevo G, Chu CT, Oury TD, Klann E. Impairment of<br />

long-term potentiation <strong>and</strong> associative memory in mice that overexpress<br />

extracellular superoxide dismutase. J Neurosci 20: 7631–<br />

7639, 2000.<br />

877. Thiery JP, Sleeman JP. Complex networks orchestrate epithelialmesenchymal<br />

transitions. Nat Rev Mol Cell Biol 7: 131–142, 2006.<br />

878. Thrasher A, Chetty M, Casimir C, Segal AW. Restoration of<br />

superoxide generation to a chronic granulomatous disease-derived<br />

B-cell line by retrovirus mediated gene transfer. Blood 80: 1125–<br />

1129, 1992.<br />

879. Tojo T, Ushio-Fukai M, Yamaoka-Tojo M, Ikeda S, Patrushev<br />

N, Alex<strong>and</strong>er RW. Role of gp91phox (Nox2)-containing NAD(P)H<br />

oxidase in angiogenesis in response to hindlimb ischemia. Circulation<br />

111: 2347–2355, 2005.<br />

880. Torres M, Forman HJ. Redox signaling <strong>and</strong> the MAP kinase<br />

pathways. Biofactors 17: 287–296, 2003.<br />

881. Touyz RM, Chen X, Tabet F, Yao G, He G, Quinn MT, Pagano<br />

PJ, Schiffrin EL. Expression of a functionally active gp91phoxcontaining<br />

neutrophil-type NAD(P)H oxidase in smooth muscle<br />

cells from human resistance arteries: regulation by angiotensin II.<br />

Circ Res 90: 1205–1213, 2002.<br />

882. Touyz RM, Mercure C, He Y, Javeshghani D, Yao G, Callera<br />

GE, Yogi A, Lochard N, Reudelhuber TL. Angiotensin II-dependent<br />

chronic hypertension <strong>and</strong> cardiac hypertrophy are unaffected<br />

by gp91phox-containing NADPH oxidase. Hypertension 45: 530–<br />

537, 2005.<br />

883. Touyz RM, Schiffrin EL. Reactive oxygen species in vascular<br />

biology: implications in hypertension. Histochem Cell Biol 122:<br />

339–352, 2004.<br />

884. Touyz RM, Tabet F, Schiffrin EL. Redox-dependent signalling by<br />

angiotensin II <strong>and</strong> vascular remodelling in hypertension. Clin Exp<br />

Pharmacol Physiol 30: 860–866, 2003.<br />

885. Touyz RM, Yao G, Viel E, Amiri F, Schiffrin EL. Angiotensin II<br />

<strong>and</strong> endothelin-1 regulate MAP kinases through different redoxdependent<br />

mechanisms in human vascular smooth muscle cells.<br />

J Hypertens 22: 1141–1149, 2004.<br />

886. Tsubouchi H, Inoguchi T, Inuo M, Kakimoto M, Sonta T,<br />

Sonoda N, Sasaki S, Kobayashi K, Sumimoto H, Nawata H.<br />

Sulfonylurea as well as elevated glucose levels stimulate reactive<br />

oxygen species production in the pancreatic beta-cell line, MIN6-a<br />

role of NAD(P)H oxidase in beta-cells. Biochem Biophys Res Commun<br />

326: 60–65, 2005.<br />

887. Tsukimori K, Maeda H, Ishida K, Nagata H, Koyanagi T,<br />

Nakano H. The superoxide generation of neutrophils in normal<br />

<strong>and</strong> preeclamptic pregnancies. Obstet Gynecol 81: 536–540, 1993.<br />

Downloaded from<br />

physrev.physiology.org<br />

on February 2, 2010

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!