13.02.2013 Views

Karen Bedard and Karl-Heinz Krause

Karen Bedard and Karl-Heinz Krause

Karen Bedard and Karl-Heinz Krause

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

732. Razumovitch JA, Semenkova GN, Fuchs D, Cherenkevich SN.<br />

Influence of neopterin on the generation of reactive oxygen species<br />

in human neutrophils. FEBS Lett 549: 83–86, 2003.<br />

733. Reddy JK, Rao MS. Oxidative DNA damage caused by persistent<br />

peroxisome proliferation: its role in hepatocarcinogenesis. Mutat<br />

Res 214: 63–68, 1989.<br />

734. Redondo PC, Salido GM, Rosado JA, Pariente JA. Effect of<br />

hydrogen peroxide on Ca 2� mobilisation in human platelets<br />

through sulphydryl oxidation dependent <strong>and</strong> independent mechanisms.<br />

Biochem Pharmacol 67: 491–502, 2004.<br />

735. Reeves EP, Lu H, Jacobs HL, Messina CG, Bolsover S, Gabella<br />

G, Potma EO, Warley A, Roes J, Segal AW. Killing activity of<br />

neutrophils is mediated through activation of proteases by K � flux.<br />

Nature 416: 291–297, 2002.<br />

736. Reeves EP, Nagl M, Godovac-Zimmermann J, Segal AW. Reassessment<br />

of the microbicidal activity of reactive oxygen species<br />

<strong>and</strong> hypochlorous acid with reference to the phagocytic vacuole of<br />

the neutrophil granulocyte. J Med Microbiol 52: 643–651, 2003.<br />

737. Reid MB, Shoji T, Moody MR, Entman ML. Reactive oxygen in<br />

skeletal muscle. II. Extracellular release of free radicals. J Appl<br />

Physiol 73: 1805–1809, 1992.<br />

738. Reimer KA, Murry CE, Yamasawa I, Hill ML, Jennings RB.<br />

Four brief periods of myocardial ischemia cause no cumulative<br />

ATP loss or necrosis. Am J Physiol Heart Circ Physiol 251: H1306–<br />

H1315, 1986.<br />

739. Reinehr R, Becker S, Eberle A, Grether-Beck S, Haussinger D.<br />

Involvement of NADPH oxidase isoforms <strong>and</strong> Src family kinases in<br />

CD95-dependent hepatocyte apoptosis. J Biol Chem 280: 27179–<br />

27194, 2005.<br />

740. Reinehr R, Becker S, Keitel V, Eberle A, Grether-Beck S,<br />

Haussinger D. Bile salt-induced apoptosis involves NADPH oxidase<br />

isoform activation. Gastroenterology 129: 2009–2031, 2005.<br />

741. Reinehr R, Graf D, Haussinger D. Bile salt-induced hepatocyte<br />

apoptosis involves epidermal growth factor receptor-dependent<br />

CD95 tyrosine phosphorylation. Gastroenterology 125: 839–853,<br />

2003.<br />

742. Reinehr R, Schliess F, Haussinger D. Hyperosmolarity <strong>and</strong><br />

CD95L trigger CD95/EGF receptor association <strong>and</strong> tyrosine phosphorylation<br />

of CD95 as prerequisites for CD95 membrane trafficking<br />

<strong>and</strong> DISC formation. FASEB J 17: 731–733, 2003.<br />

743. Rey FE, Cifuentes ME, Kiarash A, Quinn MT, Pagano PJ.<br />

Novel competitive inhibitor of NAD(P)H oxidase assembly attenuates<br />

vascular O 2 � <strong>and</strong> systolic blood pressure in mice. Circ Res 89:<br />

408–414, 2001.<br />

744. Rey FE, Li XC, Carretero OA, Garvin JL, Pagano PJ. Perivascular<br />

superoxide anion contributes to impairment of endotheliumdependent<br />

relaxation: role of gp91(phox). Circulation 106: 2497–<br />

2502, 2002.<br />

745. Rhyu DY, Yang Y, Ha H, Lee GT, Song JS, Uh ST, Lee HB. Role<br />

of reactive oxygen species in TGF-beta1-induced mitogen-activated<br />

protein kinase activation <strong>and</strong> epithelial-mesenchymal transition in<br />

renal tubular epithelial cells. J Am Soc Nephrol 16: 667–675, 2005.<br />

746. Richer SC, Ford WC. A critical investigation of NADPH oxidase<br />

activity in human spermatozoa. Mol Hum Reprod 7: 237–244, 2001.<br />

747. Riganti C, Costamagna C, Bosia A, Ghigo D. The NADPH oxidase<br />

inhibitor apocynin (acetovanillone) induces oxidative stress.<br />

Toxicol Appl Pharmacol 212: 179–187, 2005.<br />

748. Riley JC, Behrman HR. In vivo generation of hydrogen peroxide<br />

in the rat corpus luteum during luteolysis. Endocrinology 128:<br />

1749–1753, 1991.<br />

749. Ritsick DR, Lambeth JD. Spring brings breezes, wheezes, pollen<br />

oxidases. J Clin Invest 115: 2067–2069, 2005.<br />

750. Robinson JM, Ohira T, Badwey JA. Regulation of the NADPHoxidase<br />

complex of phagocytic leukocytes. Recent insights from<br />

structural biology, molecular genetics, microscopy. Histochem Cell<br />

Biol 122: 293–304, 2004.<br />

751. Rodaway AR, Teahan CG, Casimir CM, Segal AW, Bentley DL.<br />

Characterization of the 47-kilodalton autosomal chronic granulomatous<br />

disease protein: tissue-specific expression <strong>and</strong> transcriptional<br />

control by retinoic acid. Mol Cell Biol 10: 5388–5396, 1990.<br />

752. Roos D, van Bruggen R, Meischl C. Oxidative killing of microbes<br />

by neutrophils. Microbes Infect 5: 1307–1315, 2003.<br />

THE NOX FAMILY OF ROS-GENERATING NADPH OXIDASES 307<br />

Physiol Rev VOL 87 JANUARY 2007 www.prv.org<br />

753. Rose ML, Rusyn I, Bojes HK, Belyea J, Cattley RC, Thurman<br />

RG. Role of Kupffer cells <strong>and</strong> oxidants in signaling peroxisome<br />

proliferator-induced hepatocyte proliferation. Mutat Res 448: 179–<br />

192, 2000.<br />

754. Rosenberger CM, Finlay BB. Macrophages inhibit Salmonella<br />

typhimurium replication through MEK/ERK kinase <strong>and</strong> phagocyte<br />

NADPH oxidase activities. J Biol Chem 277: 18753–18762, 2002.<br />

755. Rossi F, Zatti M. Biochemical aspects of phagocytosis in polymorphonuclear<br />

leucocytes. NADH <strong>and</strong> NADPH oxidation by the<br />

granules of resting <strong>and</strong> phagocytizing cells. Experientia 20: 21–23,<br />

1964.<br />

756. Rothfork JM, Timmins GS, Harris MN, Chen X, Lusis AJ, Otto<br />

M, Cheung AL, Gresham HD. Inactivation of a bacterial virulence<br />

pheromone by phagocyte-derived oxidants: new role for the<br />

NADPH oxidase in host defense. Proc Natl Acad Sci USA 101:<br />

13867–13872, 2004.<br />

757. Rotrosen D, Kleinberg ME, Nunoi H, Leto T, Gallin JI, Malech<br />

HL. Evidence for a functional cytoplasmic domain of phagocyte<br />

oxidase cytochrome b558. J Biol Chem 265: 8745–8750, 1990.<br />

758. Rouhanizadeh M, Hwang J, Clempus RE, Marcu L, Lassegue<br />

B, Sevanian A, Hsiai TK. Oxidized-1-palmitoyl-2-arachidonoyl-snglycero-3-phosphorylcholine<br />

induces vascular endothelial superoxide<br />

production: implication of NADPH oxidase. Free Radical Biol<br />

Med 39: 1512–1522, 2005.<br />

759. Rousselle AV, Heymann D. Osteoclastic acidification pathways<br />

during bone resorption. Bone 30: 533–540, 2002.<br />

760. Roy A, Rozanov C, Mokashi A, Daudu P, Al-mehdi AB, Shams<br />

H, Lahiri S. Mice lacking in gp91 phox subunit of NAD(P)H<br />

oxidase showed glomus cell [Ca 2� ] i <strong>and</strong> respiratory responses to<br />

hypoxia. Brain Res 872: 188–193, 2000.<br />

761. Roy S, Khanna S, Bickerstaff AA, Subramanian SV, Atalay M,<br />

Bierl M, Pendyala S, Levy D, Sharma N, Venojarvi M, Strauch<br />

A, Orosz CG, Sen CK. Oxygen sensing by primary cardiac fibroblasts:<br />

a key role of p21(Waf1/Cip1/Sdi1). Circ Res 92: 264–271,<br />

2003.<br />

762. Royer-Pokora B, Kunkel LM, Monaco AP, Goff SC, Newburger<br />

PE, Baehner RL, Cole FS, Curnutte JT, Orkin SH.<br />

Cloning the gene for an inherited human disorder–chronic granulomatous<br />

disease–on the basis of its chromosomal location. Nature<br />

322: 32–38, 1986.<br />

763. Rude MK, Duhaney TA, Kuster GM, Judge S, Heo J, Colucci<br />

WS, Siwik DA, Sam F. Aldosterone stimulates matrix metalloproteinases<br />

<strong>and</strong> reactive oxygen species in adult rat ventricular cardiomyocytes.<br />

Hypertension 46: 555–561, 2005.<br />

764. Rudich A, Tirosh A, Potashnik R, Hemi R, Kanety H, Bashan<br />

N. Prolonged oxidative stress impairs insulin-induced GLUT4<br />

translocation in 3T3-L1 adipocytes. Diabetes 47: 1562–1569, 1998.<br />

765. Rusyn I, Asakura S, Pachkowski B, Bradford BU, Denissenko<br />

MF, Peters JM, Holl<strong>and</strong> SM, Reddy JK, Cunningham ML,<br />

Swenberg JA. Expression of base excision DNA repair genes is a<br />

sensitive biomarker for in vivo detection of chemical-induced<br />

chronic oxidative stress: identification of the molecular source of<br />

radicals responsible for DNA damage by peroxisome proliferators.<br />

Cancer Res 64: 1050–1057, 2004.<br />

766. Rusyn I, Kadiiska MB, Dikalova A, Kono H, Yin M, Tsuchiya K,<br />

Mason RP, Peters JM, Gonzalez FJ, Segal BH, Holl<strong>and</strong> SM,<br />

Thurman RG. Phthalates rapidly increase production of reactive<br />

oxygen species in vivo: role of Kupffer cells. Mol Pharmacol 59:<br />

744–750, 2001.<br />

767. Rusyn I, Yamashina S, Segal BH, Schoonhoven R, Holl<strong>and</strong> SM,<br />

Cattley RC, Swenberg JA, Thurman RG. Oxidants from nicotinamide<br />

adenine dinucleotide phosphate oxidase are involved in<br />

triggering cell proliferation in the liver due to peroxisome proliferators.<br />

Cancer Res 60: 4798–4803, 2000.<br />

768. Rymsa B, Wang JF, de Groot H. O 2 � release by activated Kupffer<br />

cells upon hypoxia-reoxygenation. Am J Physiol Gastrointest<br />

Liver Physiol 261: G602–G607, 1991.<br />

769. Sabri A, Hughie HH, Lucchesi PA. Regulation of hypertrophic<br />

<strong>and</strong> apoptotic signaling pathways by reactive oxygen species in<br />

cardiac myocytes. Antioxid Redox Signal 5: 731–740, 2003.<br />

770. Salles N, Szanto I, Herrmann F, Armenian B, Stumm M,<br />

Stauffer E, Michel JP, <strong>Krause</strong> KH. Expression of mRNA for<br />

Downloaded from<br />

physrev.physiology.org<br />

on February 2, 2010

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!