13.02.2013 Views

Karen Bedard and Karl-Heinz Krause

Karen Bedard and Karl-Heinz Krause

Karen Bedard and Karl-Heinz Krause

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

without nonfamilial hypercholesterolemia. Atherosclerosis 172:<br />

167–173, 2004.<br />

812. Shimo-Nakanishi Y, Hasebe T, Suzuki A, Mochizuki H,<br />

Nomiyama T, Tanaka Y, Nagaoka I, Mizuno Y, Urabe T. Functional<br />

effects of NAD(P)H oxidase p22(phox) C242T mutation in<br />

human leukocytes <strong>and</strong> association with thrombotic cerebral infarction.<br />

Atherosclerosis 175: 109–115, 2004.<br />

813. Shiose A, Kuroda J, Tsuruya K, Hirai M, Hirakata H, Naito S,<br />

Hattori M, Sakaki Y, Sumimoto H. A novel superoxide-producing<br />

NAD(P)H oxidase in kidney. J Biol Chem 276: 1417–1423, 2001.<br />

814. Shiota M, Mori S, Imajoh-Ohmi S, Nakamura M, Kanegasaki<br />

S, Serizawa H, Izumo T, Uehara T. Expression of cytochrome<br />

b558 on B cell- <strong>and</strong> CD 30 positive-lymphomas. Pathol Res Pract<br />

189: 985–991, 1993.<br />

815. Shono T, Ono M, Izumi H, Jimi SI, Matsushima K, Okamoto T,<br />

Kohno K, Kuwano M. Involvement of the transcription factor<br />

NF-kappaB in tubular morphogenesis of human microvascular endothelial<br />

cells by oxidative stress. Mol Cell Biol 16: 4231–4239,<br />

1996.<br />

816. Shukla S, Jha RK, Laloraya M, Kumar PG. Identification of<br />

non-mitochondrial NADPH oxidase <strong>and</strong> the spatio-temporal organization<br />

of its components in mouse spermatozoa. Biochem Biophys<br />

Res Commun 331: 476–483, 2005.<br />

817. Simons JM, Hart BA, Ip Vai Ching TR, Van Dijk H, Labadie RP.<br />

Metabolic activation of natural phenols into selective oxidative<br />

burst agonists by activated human neutrophils. Free Radical Biol<br />

Med 8: 251–258, 1990.<br />

818. Skalnik DG, Dorfman DM, Perkins AS, Jenkins NA, Copel<strong>and</strong><br />

NG, Orkin SH. Targeting of transgene expression to monocyte/<br />

macrophages by the gp91-phox promoter <strong>and</strong> consequent histiocytic<br />

malignancies. Proc Natl Acad Sci USA 88: 8505–8509, 1991.<br />

819. Skalnik DG, Strauss EC, Orkin SH. CCAAT displacement protein<br />

as a repressor of the myelomonocytic-specific gp91-phox gene<br />

promoter. J Biol Chem 266: 16736–16744, 1991.<br />

820. Snelgrove RJ, Edwards L, Rae AJ, Hussell T. An absence of<br />

reactive oxygen species improves the resolution of lung influenza<br />

infection. Eur J Immunol 36: 1364–1373, 2006.<br />

821. Soccio M, Toniato E, Evangelista V, Carluccio M, De Caterina<br />

R. Oxidative stress <strong>and</strong> cardiovascular risk: the role of vascular<br />

NAD(P)H oxidase <strong>and</strong> its genetic variants. Eur J Clin Invest 35:<br />

305–314, 2005.<br />

822. Sorescu D, Griendling KK. Reactive oxygen species, mitochondria,<br />

NAD(P)H oxidases in the development <strong>and</strong> progression of<br />

heart failure. Congest Heart Fail 8: 132–140, 2002.<br />

823. Sorescu GP, Song H, Tressel SL, Hwang J, Dikalov S, Smith<br />

DA, Boyd NL, Platt MO, Lassegue B, Griendling KK, Jo H.<br />

Bone morphogenic protein 4 produced in endothelial cells by oscillatory<br />

shear stress induces monocyte adhesion by stimulating<br />

reactive oxygen species production from a nox1-based NADPH<br />

oxidase. Circ Res 95: 773–779, 2004.<br />

824. Spector A. Oxidative stress-induced cataract: mechanism of action.<br />

FASEB J 9: 1173–1182, 1995.<br />

825. Spiekermann S, L<strong>and</strong>messer U, Dikalov S, Bredt M, Gamez G,<br />

Tatge H, Reepschlager N, Hornig B, Drexler H, Harrison DG.<br />

Electron spin resonance characterization of vascular xanthine <strong>and</strong><br />

NAD(P)H oxidase activity in patients with coronary artery disease:<br />

relation to endothelium-dependent vasodilation. Circulation 107:<br />

1383–1389, 2003.<br />

826. Spongr VP, Flood DG, Frisina RD, Salvi RJ. Quantitative measures<br />

of hair cell loss in CBA <strong>and</strong> C57BL/6 mice throughout their<br />

life spans. J Acoust Soc Am 101: 3546–3553, 1997.<br />

827. Stanger O, Renner W, Khoschsorur G, Rigler B, Wascher TC.<br />

NADH/NADPH oxidase p22 phox C242T polymorphism <strong>and</strong> lipid<br />

peroxidation in coronary artery disease. Clin Physiol 21: 718–722,<br />

2001.<br />

828. Stasia MJ, Bordigoni P, Martel C, Morel F. A novel <strong>and</strong> unusual<br />

case of chronic granulomatous disease in a child with a homozygous<br />

36-bp deletion in the CYBA gene [A22(0)] leading to the<br />

activation of a cryptic splice site in intron 4. Hum Genet 110:<br />

444–450, 2002.<br />

829. Steinbeck MJ, Appel WH Jr, Verhoeven AJ, Karnovsky MJ.<br />

NADPH-oxidase expression <strong>and</strong> in situ production of superoxide<br />

THE NOX FAMILY OF ROS-GENERATING NADPH OXIDASES 309<br />

Physiol Rev VOL 87 JANUARY 2007 www.prv.org<br />

by osteoclasts actively resorbing bone. J Cell Biol 126: 765–772,<br />

1994.<br />

830. Steinbeck MJ, Kim JK, Trudeau MJ, Hauschka PV, Karnovsky<br />

MJ. Involvement of hydrogen peroxide in the differentiation of<br />

clonal HD-11EM cells into osteoclast-like cells. J Cell Physiol 176:<br />

574–587, 1998.<br />

831. Steinbrenner H, Ramos MC, Stuhlmann D, Mitic D, Sies H,<br />

Brenneisen P. Tumor promoter TPA stimulates MMP-9 secretion<br />

from human keratinocytes by activation of superoxide-producing<br />

NADPH oxidase. Free Radic Res 39: 245–253, 2005.<br />

832. Stocker R, Keaney JF Jr. Role of oxidative modifications in<br />

atherosclerosis. Physiol Rev 84: 1381–1478, 2004.<br />

833. Stolk J, Hiltermann TJ, Dijkman JH, Verhoeven AJ. Characteristics<br />

of the inhibition of NADPH oxidase activation in neutrophils<br />

by apocynin, a methoxy-substituted catechol. Am J Respir<br />

Cell Mol Biol 11: 95–102, 1994.<br />

834. Strauss O. The retinal pigment epithelium in visual function.<br />

Physiol Rev 85: 845–881, 2005.<br />

835. Stuehr DJ, Fasehun OA, Kwon NS, Gross SS, Gonzalez JA,<br />

Levi R, Nathan CF. Inhibition of macrophage <strong>and</strong> endothelial cell<br />

nitric oxide synthase by diphenyleneiodonium <strong>and</strong> its analogs.<br />

FASEB J 5: 98–103, 1991.<br />

836. Sturrock A, Cahill B, Norman K, Huecksteadt TP, Hill K,<br />

S<strong>and</strong>ers K, Karw<strong>and</strong>e SV, Stringham JC, Bull DA, Gleich M,<br />

Kennedy TP, Hoidal JR. Transforming growth factor �1 induces<br />

Nox 4 NAD(P)H oxidase <strong>and</strong> reactive oxygen species-dependent<br />

proliferation in human pulmonary artery smooth muscle cells.<br />

Am J Physiol Lung Cell Mol Physiol 290: L661–L673, 2005.<br />

837. Suematsu M, Aiso S. Professor Toshio Ito: a clairvoyant in pericyte<br />

biology. Keio J Med 50: 66–71, 2001.<br />

838. Sugimoto R, Enjoji M, Kohjima M, Tsuruta S, Fukushima M,<br />

Iwao M, Sonta T, Kotoh K, Inoguchi T, Nakamuta M. High<br />

glucose stimulates hepatic stellate cells to proliferate <strong>and</strong> to produce<br />

collagen through free radical production <strong>and</strong> activation of<br />

mitogen-activated protein kinase. Liver Int 25: 1018–1026, 2005.<br />

839. Sugino N, Karube-Harada A, Taketani T, Sakata A, Nakamura<br />

Y. Withdrawal of ovarian steroids stimulates prostagl<strong>and</strong>in F2alpha<br />

production through nuclear factor-kappaB activation via oxygen<br />

radicals in human endometrial stromal cells: potential relevance to<br />

menstruation. J Reprod Dev 50: 215–225, 2004.<br />

840. Sugino N, Shimamura K, Takiguchi S, Tamura H, Ono M,<br />

Nakata M, Nakamura Y, Ogino K, Uda T, Kato H. Changes in<br />

activity of superoxide dismutase in the human endometrium<br />

throughout the menstrual cycle <strong>and</strong> in early pregnancy. Hum Reprod<br />

11: 1073–1078, 1996.<br />

841. Suh YA, Arnold RS, Lassegue B, Shi J, Xu X, Sorescu D, Chung<br />

AB, Griendling KK, Lambeth JD. Cell transformation by the<br />

superoxide-generating oxidase Mox1. Nature 401: 79–82, 1999.<br />

842. Suliman HB, Ali M, Piantadosi CA. Superoxide dismutase-3<br />

promotes full expression of the EPO response to hypoxia. Blood<br />

104: 43–50, 2004.<br />

843. Sumimoto H, Hata K, Mizuki K, Ito T, Kage Y, Sakaki Y,<br />

Fukumaki Y, Nakamura M, Takeshige K. Assembly <strong>and</strong> activation<br />

of the phagocyte NADPH oxidase. Specific interaction of the<br />

N-terminal Src homology 3 domain of p47phox with p22phox is<br />

required for activation of the NADPH oxidase. J Biol Chem 271:<br />

22152–22158, 1996.<br />

844. Sumimoto H, Miyano K, Takeya R. Molecular composition <strong>and</strong><br />

regulation of the Nox family NAD(P)H oxidases. Biochem Biophys<br />

Res Commun 338: 677–686, 2005.<br />

845. Sun C, Sellers KW, Sumners C, Raizada MK. NAD(P)H oxidase<br />

inhibition attenuates neuronal chronotropic actions of angiotensin<br />

II. Circ Res 96: 659–666, 2005.<br />

846. Sun Y, Oberley LW. Redox regulation of transcriptional activators.<br />

Free Radical Biol Med 21: 335–348, 1996.<br />

847. Sun Y, Zhang J, Lu L, Chen SS, Quinn MT, Weber KT. Aldosterone-induced<br />

inflammation in the rat heart: role of oxidative<br />

stress. Am J Pathol 161: 1773–1781, 2002.<br />

848. Sundaresan M, Yu ZX, Ferrans VJ, Irani K, Finkel T. Requirement<br />

for generation of H 2O 2 for platelet-derived growth factor<br />

signal transduction. Science 270: 296–299, 1995.<br />

849. Susztak K, Raff AC, Schiffer M, Bottinger EP. Glucose-induced<br />

reactive oxygen species cause apoptosis of podocytes <strong>and</strong> podo-<br />

Downloaded from<br />

physrev.physiology.org<br />

on February 2, 2010

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!