13.02.2013 Views

Karen Bedard and Karl-Heinz Krause

Karen Bedard and Karl-Heinz Krause

Karen Bedard and Karl-Heinz Krause

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

300 KAREN BEDARD AND KARL-HEINZ KRAUSE<br />

457. Kim YM, Guzik TJ, Zhang YH, Zhang MH, Kattach H, Ratnatunga<br />

C, Pillai R, Channon KM, Casadei B. A myocardial Nox2<br />

containing NAD(P)H oxidase contributes to oxidative stress in<br />

human atrial fibrillation. Circ Res 97: 629–636, 2005.<br />

458. Kimura S, Zhang GX, Nishiyama A, Shokoji T, Yao L, Fan YY,<br />

Rahman M, Suzuki T, Maeta H, Abe Y. Role of NAD(P)H oxidase-<br />

<strong>and</strong> mitochondria-derived reactive oxygen species in cardioprotection<br />

of ischemic reperfusion injury by angiotensin II. Hypertension<br />

45: 860–866, 2005.<br />

459. Kinnula VL, Everitt JI, Whorton AR, Crapo JD. Hydrogen<br />

peroxide production by alveolar type II cells, alveolar macrophages,<br />

endothelial cells. Am J Physiol Lung Cell Mol Physiol 261:<br />

L84–L91, 1991.<br />

460. Kinugawa S, Zhang J, Messina E, Walsh E, Huang H, Kaminski<br />

PM, Wolin MS, Hintze TH. gp91phox-containing NAD(P)H oxidase<br />

mediates attenuation of nitric oxide-dependent control of<br />

myocardial oxygen consumption by ANG II. Am J Physiol Heart<br />

Circ Physiol 289: H862–H867, 2005.<br />

461. Kishida KT, Hoeffer CA, Hu D, Pao M, Holl<strong>and</strong> SM, Klann E.<br />

Synaptic plasticity deficits <strong>and</strong> mild memory impairments in mouse<br />

models of chronic granulomatous disease. Mol Cell Biol 26: 5908–<br />

5920, 2006.<br />

462. Kishida KT, Pao M, Holl<strong>and</strong> SM, Klann E. NADPH oxidase is<br />

required for NMDA receptor-dependent activation of ERK in hippocampal<br />

area CA1. J Neurochem 94: 299–306, 2005.<br />

463. Kiss PJ, Knisz J, Zhang Y, Baltrusaitis J, Sigmund CD, Thalmann<br />

R, Smith RJ, Verpy E, Banfi B. Inactivation of NADPH<br />

oxidase organizer 1 results in severe imbalance. Curr Biol 16:<br />

208–213, 2006.<br />

464. Kitiyakara C, Chabrashvili T, Chen Y, Blau J, Karber A,<br />

Aslam S, Welch WJ, Wilcox CS. Salt intake, oxidative stress,<br />

renal expression of NADPH oxidase <strong>and</strong> superoxide dismutase.<br />

J Am Soc Nephrol 14: 2775–2782, 2003.<br />

465. Kjeldsen L, Sengelov H, Lollike K, Nielsen MH, Borregaard N.<br />

Isolation <strong>and</strong> characterization of gelatinase granules from human<br />

neutrophils. Blood 83: 1640–1649, 1994.<br />

466. Klebanoff SJ. Myeloperoxidase: contribution to the microbicidal<br />

activity of intact leukocytes. Science 169: 1095–1097, 1970.<br />

467. Klebanoff SJ. Myeloperoxidase: friend <strong>and</strong> foe. J Leukoc Biol 77:<br />

598–625, 2005.<br />

468. Klebanoff SJ. Oxygen metabolism <strong>and</strong> the toxic properties of<br />

phagocytes. Ann Intern Med 93: 480–489, 1980.<br />

469. Knapp LT, Klann E. Role of reactive oxygen species in hippocampal<br />

long-term potentiation: contributory or inhibitory? J Neurosci<br />

Res 70: 1–7, 2002.<br />

470. Knaus UG, Heyworth PG, Evans T, Curnutte JT, Bokoch GM.<br />

Regulation of phagocyte oxygen radical production by the GTPbinding<br />

protein Rac 2. Science 254: 1512–1515, 1991.<br />

471. Kobayashi S, Imajoh-Ohmi S, Kuribayashi F, Nunoi H, Nakamura<br />

M, Kanegasaki S. Characterization of the superoxide-generating<br />

system in human peripheral lymphocytes <strong>and</strong> lymphoid cell<br />

lines. J Biochem 117: 758–765, 1995.<br />

472. Kobayashi S, Imajoh-Ohmi S, Nakamura M, Kanegasaki S.<br />

Occurrence of cytochrome b558 in B-cell lineage of human lymphocytes.<br />

Blood 75: 458–461, 1990.<br />

473. Kobayashi S, Nojima Y, Shibuya M, Maru Y. Nox1 regulates<br />

apoptosis <strong>and</strong> potentially stimulates branching morphogenesis in<br />

sinusoidal endothelial cells. Exp Cell Res 300: 455–462, 2004.<br />

474. Kobayashi SD, Voyich JM, Braughton KR, Whitney AR, Nauseef<br />

WM, Malech HL, DeLeo FR. Gene expression profiling provides<br />

insight into the pathophysiology of chronic granulomatous<br />

disease. J Immunol 172: 636–643, 2004.<br />

475. Koch OR, Pani G, Borrello S, Colavitti R, Cravero A, Farre S,<br />

Galeotti T. Oxidative stress <strong>and</strong> antioxidant defenses in ethanolinduced<br />

cell injury. Mol Aspects Med 25: 191–198, 2004.<br />

476. Koga H, Terasawa H, Nunoi H, Takeshige K, Inagaki F, Sumimoto<br />

H. Tetratricopeptide repeat (TPR) motifs of p67(phox) participate<br />

in interaction with the small GTPase Rac <strong>and</strong> activation of<br />

the phagocyte NADPH oxidase. J Biol Chem 274: 25051–25060,<br />

1999.<br />

477. Koh JM, Lee YS, Kim YS, Kim DJ, Kim HH, Park JY, Lee KU,<br />

Kim GS. Homocysteine enhances bone resorption by stimulation<br />

Physiol Rev VOL 87 JANUARY 2007 www.prv.org<br />

of osteoclast formation <strong>and</strong> activity through increased intracellular<br />

ROS generation. J Bone Miner Res 21: 1003–1011, 2006.<br />

478. Kojima S, Nomura T, Icho T, Kajiwara Y, Kitabatake K, Kubota<br />

K. Inhibitory effect of neopterin on NADPH-dependent superoxide-generating<br />

oxidase of rat peritoneal macrophages. FEBS<br />

Lett 329: 125–128, 1993.<br />

479. Kokubo Y, Iwai N, Tago N, Inamoto N, Okayama A, Yamawaki<br />

H, Naraba H, Tomoike H. Association analysis between hypertension<br />

<strong>and</strong> CYBA, CLCNKB, KCNMB1 functional polymorphisms<br />

in the Japanese population—the Suita Study. Circ J 69: 138–142,<br />

2005.<br />

480. Kolbuch-Braddon ME, Peterhans E, Stocker R, Weidemann<br />

MJ. Oxygen uptake associated with Sendai-virus-stimulated chemiluminescence<br />

in rat thymocytes contains a significant non-mitochondrial<br />

component. Biochem J 222: 541–551, 1984.<br />

481. Komatsu J, Koyama H, Maeda N, Aratani Y. Earlier onset of<br />

neutrophil-mediated inflammation in the ultraviolet-exposed skin<br />

of mice deficient in myeloperoxidase <strong>and</strong> NADPH oxidase. Inflamm<br />

Res 55: 200–206, 2006.<br />

482. Kono H, Rusyn I, Yin M, Gabele E, Yamashina S, Dikalova A,<br />

Kadiiska MB, Connor HD, Mason RP, Segal BH, Bradford BU,<br />

Holl<strong>and</strong> SM, Thurman RG. NADPH oxidase-derived free radicals<br />

are key oxidants in alcohol-induced liver disease. J Clin Invest 106:<br />

867–872, 2000.<br />

483. Kopke RD, Liu W, Gabaizadeh R, Jacono A, Feghali J, Spray<br />

D, Garcia P, Steinman H, Malgrange B, Ruben RJ, Rybak L,<br />

Van de Water TR. Use of organotypic cultures of Corti’s organ to<br />

study the protective effects of antioxidant molecules on cisplatininduced<br />

damage of auditory hair cells. Am J Otol 18: 559–571, 1997.<br />

484. Krex D, Ziegler A, Konig IR, Schackert HK, Schackert G.<br />

Polymorphisms of the NADPH oxidase P22PHOX gene in a Caucasian<br />

population with intracranial aneurysms. Cerebrovasc Dis 16:<br />

363–368, 2003.<br />

485. Krieger-Brauer HI, Kather H. Antagonistic effects of different<br />

members of the fibroblast <strong>and</strong> platelet-derived growth factor families<br />

on adipose conversion <strong>and</strong> NADPH-dependent H 2O 2 generation<br />

in 3T3 L1-cells. Biochem J 307: 549–556, 1995.<br />

486. Krieger-Brauer HI, Kather H. Human fat cells possess a plasma<br />

membrane-bound H 2O 2-generating system that is activated by insulin<br />

via a mechanism bypassing the receptor kinase. J Clin Invest<br />

89: 1006–1013, 1992.<br />

487. Krieger-Brauer HI, Medda PK, Kather H. Insulin-induced activation<br />

of NADPH-dependent H 2O 2 generation in human adipocyte<br />

plasma membranes is mediated by Galphai2. J Biol Chem 272:<br />

10135–10143, 1997.<br />

488. Krijnen PA, Meischl C, Hack CE, Meijer CJ, Visser CA, Roos<br />

D, Niessen HW. Increased Nox2 expression in human cardiomyocytes<br />

after acute myocardial infarction. J Clin Pathol 56: 194–199,<br />

2003.<br />

489. Krotz F, Sohn HY, Gloe T, Zahler S, Riexinger T, Schiele TM,<br />

Becker BF, Theisen K, Klauss V, Pohl U. NAD(P)H oxidasedependent<br />

platelet superoxide anion release increases platelet recruitment.<br />

Blood 100: 917–924, 2002.<br />

490. Kummer W, Acker H. Immunohistochemical demonstration of<br />

four subunits of neutrophil NAD(P)H oxidase in type I cells of<br />

carotid body. J Appl Physiol 78: 1904–1909, 1995.<br />

491. Kummer W, Hohler B, Goldenberg A, Lange B. Subcellular<br />

localization <strong>and</strong> function of B-type cytochromes in carotid body<br />

<strong>and</strong> other paraganglionic cells. Adv Exp Med Biol 475: 371–375,<br />

2000.<br />

492. Kummer W, Konig P, Hohler B. Cytochrome b558 (p22phox) in<br />

the guinea-pig adrenal medulla. Microsc Res Tech 47: 215–220, 1999.<br />

493. Kuribayashi F, Nunoi H, Wakamatsu K, Tsunawaki S, Sato K,<br />

Ito T, Sumimoto H. The adaptor protein p40(phox) as a positive<br />

regulator of the superoxide-producing phagocyte oxidase. EMBO J<br />

21: 6312–6320, 2002.<br />

494. Kuroda J, Nakagawa K, Yamasaki T, Nakamura K, Takeya R,<br />

Kuribayashi F, Imajoh-Ohmi S, Igarashi K, Shibata Y, Sueishi<br />

K, Sumimoto H. The superoxide-producing NAD(P)H oxidase<br />

Nox4 in the nucleus of human vascular endothelial cells. Genes<br />

Cells 10: 1139–1151, 2005.<br />

495. Kuroki M, Voest EE, Amano S, Beerepoot LV, Takashima S,<br />

Tolentino M, Kim RY, Rohan RM, Colby KA, Yeo KT, Adamis<br />

Downloaded from<br />

physrev.physiology.org<br />

on February 2, 2010

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!