13.02.2013 Views

Karen Bedard and Karl-Heinz Krause

Karen Bedard and Karl-Heinz Krause

Karen Bedard and Karl-Heinz Krause

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

298 KAREN BEDARD AND KARL-HEINZ KRAUSE<br />

377. Higashi M, Shimokawa H, Hattori T, Hiroki J, Mukai Y,<br />

Morikawa K, Ichiki T, Takahashi S, Takeshita A. Long-term<br />

inhibition of Rho-kinase suppresses angiotensin II-induced cardiovascular<br />

hypertrophy in rats in vivo: effect on endothelial NAD(P)H<br />

oxidase system. Circ Res 93: 767–775, 2003.<br />

378. Hilenski LL, Clempus RE, Quinn MT, Lambeth JD, Griendling<br />

KK. Distinct subcellular localizations of Nox1 <strong>and</strong> Nox4 in vascular<br />

smooth muscle cells. Arterioscler Thromb Vasc Biol 24: 677–683,<br />

2004.<br />

379. Hines IN, Hoffman JM, Scheerens H, Day BJ, Harada H, Pavlick<br />

KP, Bharwani S, Wolf R, Gao B, Flores S, McCord JM,<br />

Grisham MB. Regulation of postischemic liver injury following<br />

different durations of ischemia. Am J Physiol Gastrointest Liver<br />

Physiol 284: G536–G545, 2003.<br />

380. Hingtgen SD, Tian X, Yang J, Dunlay SM, Peek AS, Wu Y,<br />

Sharma RV, Engelhardt JF, Davisson RL. Nox2-containing<br />

NADPH oxidase <strong>and</strong> Akt activation play a key role in angiotensin<br />

II-induced cardiomyocyte hypertrophy. Physiol Gen. In press.<br />

381. Hiran TS, Moulton PJ, Hancock JT. Detection of superoxide<br />

<strong>and</strong> NADPH oxidase in porcine articular chondrocytes. Free Radic<br />

Biol Med 23: 736–743, 1997.<br />

382. Hoffmeyer MR, Jones SP, Ross CR, Sharp B, Grisham MB,<br />

Laroux FS, Stalker TJ, Scalia R, Lefer DJ. Myocardial ischemia/reperfusion<br />

injury in NADPH oxidase-deficient mice. Circ Res<br />

87: 812–817, 2000.<br />

383. Hoidal JR, Brar SS, Sturrock AB, S<strong>and</strong>ers KA, Dinger B,<br />

Fidone S, Kennedy TP. The role of endogenous NADPH oxidases<br />

in airway <strong>and</strong> pulmonary vascular smooth muscle function. Antioxid<br />

Redox Signal 5: 751–758, 2003.<br />

384. Holl<strong>and</strong> SM. Update on phagocytic defects. Pediatr Infect Dis J<br />

22: 87–88, 2003.<br />

385. Holmes B, Page AR, Good RA. Studies of the metabolic activity<br />

of leukocytes from patients with a genetic abnormality of phagocytic<br />

function. J Clin Invest 46: 1422–1432, 1967.<br />

386. Hong H, Zeng JS, Kreulen DL, Kaufman DI, Chen AF. Atorvastatin<br />

protects against cerebral infarction via inhibiting NADPH<br />

oxidase-derived superoxide in ischemic stroke. Am J Physiol<br />

Heart Circ Physiol 291: H2210–H2215, 2006.<br />

387. Hool LC, Di Maria CA, Viola HM, Arthur PG. Role of NAD(P)H<br />

oxidase in the regulation of cardiac L-type Ca 2� channel function<br />

during acute hypoxia. Cardiovasc Res 67: 624–635, 2005.<br />

388. Hoshi T, Lahiri S. Cell biology. Oxygen sensing: it’s a gas! Science<br />

306: 2050–2051, 2004.<br />

389. Hsueh YM, Lin P, Chen HW, Shiue HS, Chung CJ, Tsai CT,<br />

Huang YK, Chiou HY, Chen CJ. Genetic polymorphisms of oxidative<br />

<strong>and</strong> antioxidant enzymes <strong>and</strong> arsenic-related hypertension. J<br />

Toxicol Environ Health A 68: 1471–1484, 2005.<br />

390. Hu Q, Yu ZX, Ferrans VJ, Takeda K, Irani K, Ziegelstein RC.<br />

Critical role of NADPH oxidase-derived reactive oxygen species in<br />

generating Ca 2� oscillations in human aortic endothelial cells stimulated<br />

by histamine. J Biol Chem 277: 32546–32551, 2002.<br />

391. Hu Q, Zheng G, Zweier JL, Deshp<strong>and</strong>e S, Irani K, Ziegelstein<br />

RC. NADPH oxidase activation increases the sensitivity of intracellular<br />

Ca 2� stores to inositol 1, 4,5-trisphosphate in human endothelial<br />

cells. J Biol Chem 275: 15749–15757, 2000.<br />

392. Hu T, Ramach<strong>and</strong>rarao SP, Siva S, Valancius C, Zhu Y, Mahadev<br />

K, Toh I, Goldstein BJ, Woolkalis M, Sharma K. Reactive<br />

oxygen species production via NADPH oxidase mediates TGF-<br />

�-induced cytoskeletal alterations in endothelial cells. Am J<br />

Physiol Renal Physiol 289: F816–F825, 2005.<br />

393. Hua H, Munk S, Goldberg H, Fantus IG, Whiteside CI. High<br />

glucose-suppressed endothelin-1 Ca 2� signaling via NADPH oxidase<br />

<strong>and</strong> diacylglycerol-sensitive protein kinase C isozymes in<br />

mesangial cells. J Biol Chem 278: 33951–33962, 2003.<br />

394. Huang J, Hitt ND, Kleinberg ME. Stoichiometry of p22-phox <strong>and</strong><br />

gp91-phox in phagocyte cytochrome b558. Biochemistry 34: 16753–<br />

16757, 1995.<br />

395. Huang JS, Noack D, Rae J, Ellis BA, Newbury R, Pong AL,<br />

Lavine JE, Curnutte JT, Bastian J. Chronic granulomatous<br />

disease caused by a deficiency in p47(phox) mimicking Crohn’s<br />

disease. Clin Gastroenterol Hepatol 2: 690–695, 2004.<br />

396. Huang LE, Gu J, Schau M, Bunn HF. Regulation of hypoxiainducible<br />

factor 1alpha is mediated by an O 2-dependent degrada-<br />

Physiol Rev VOL 87 JANUARY 2007 www.prv.org<br />

tion domain via the ubiquitin-proteasome pathway. Proc Natl Acad<br />

Sci USA 95: 7987–7992, 1998.<br />

397. Huber TB, Reinhardt HC, Exner M, Burger JA, Kerjaschki D,<br />

Saleem MA, Pavenstadt H. Expression of functional CCR <strong>and</strong><br />

CXCR chemokine receptors in podocytes. J Immunol 168: 6244–<br />

6252, 2002.<br />

398. Hultqvist M, Holmdahl R. Ncf1 (p47phox) polymorphism determines<br />

oxidative burst <strong>and</strong> the severity of arthritis in rats <strong>and</strong> mice.<br />

Cell Immunol 233: 97–101, 2005.<br />

399. Hultqvist M, Olofsson P, Holmberg J, Backstrom BT, Tordsson<br />

J, Holmdahl R. Enhanced autoimmunity, arthritis, encephalomyelitis<br />

in mice with a reduced oxidative burst due to a mutation<br />

in the Ncf1 gene. Proc Natl Acad Sci USA 101: 12646–12651, 2004.<br />

400. Hunt NH, Cook EP, Fragonas JC. Interference with oxidative<br />

processes inhibits proliferation of human peripheral blood lymphocytes<br />

<strong>and</strong> murine B-lymphocytes. Int J Immunopharmacol 13:<br />

1019–1026, 1991.<br />

401. Hunter T. Signaling—2000 <strong>and</strong> beyond. Cell 100: 113–127, 2000.<br />

402. Hwang J, Ing MH, Salazar A, Lassegue B, Griendling K, Navab<br />

M, Sevanian A, Hsiai TK. Pulsatile versus oscillatory shear stress<br />

regulates NADPH oxidase subunit expression: implication for native<br />

LDL oxidation. Circ Res 93: 1225–1232, 2003.<br />

403. Hwang J, Kleinhenz DJ, Lassegue B, Griendling KK, Dikalov<br />

S, Hart CM. Peroxisome proliferator-activated receptor-gamma<br />

lig<strong>and</strong>s regulate endothelial membrane superoxide production.<br />

Am J Physiol Cell Physiol 288: C899–C905, 2005.<br />

404. Ibi M, Katsuyama M, Fan C, Iwata K, Nishinaka T, Yokoyama<br />

T, Yabe-Nishimura C. NOX1/NADPH oxidase negatively regulates<br />

nerve growth factor-induced neurite outgrowth. Free Radic Biol<br />

Med 40: 1785–1795, 2006.<br />

405. Ihara Y, Toyokuni S, Uchida K, Odaka H, Tanaka T, Ikeda H,<br />

Hiai H, Seino Y, Yamada Y. Hyperglycemia causes oxidative<br />

stress in pancreatic beta-cells of GK rats, a model of type 2 diabetes.<br />

Diabetes 48: 927–932, 1999.<br />

406. Imajoh-Ohmi S, Tokita K, Ochiai H, Nakamura M, Kanegasaki<br />

S. Topology of cytochrome b558 in neutrophil membrane analyzed<br />

by anti-peptide antibodies <strong>and</strong> proteolysis. J Biol Chem 267: 180–<br />

184, 1992.<br />

407. Imanishi T, Hano T, Nishio I. Estrogen reduces angiotensin<br />

II-induced acceleration of senescence in endothelial progenitor<br />

cells. Hypertens Res 28: 263–271, 2005.<br />

408. Inanami O, Johnson JL, McAdara JK, Benna JE, Faust LR,<br />

Newburger PE, Babior BM. Activation of the leukocyte NADPH<br />

oxidase by phorbol ester requires the phosphorylation of p47PHOX<br />

on serine 303 or 304. J Biol Chem 273: 9539–9543, 1998.<br />

409. Inauen W, Suzuki M, Granger DN. Mechanisms of cellular injury:<br />

potential sources of oxygen free radicals in ischemia/reperfusion.<br />

Microcirc Endothelium Lymphatics 5: 143–155, 1989.<br />

410. Inoguchi T, Sonta T, Tsubouchi H, Etoh T, Kakimoto M,<br />

Sonoda N, Sato N, Sekiguchi N, Kobayashi K, Sumimoto H,<br />

Utsumi H, Nawata H. Protein kinase C-dependent increase in<br />

reactive oxygen species (ROS) production in vascular tissues of<br />

diabetes: role of vascular NAD(P)H oxidase. J Am Soc Nephrol 14:<br />

S227–S232, 2003.<br />

411. Inoue N, Kawashima S, Kanazawa K, Yamada S, Akita H,<br />

Yokoyama M. Polymorphism of the NADH/NADPH oxidase p22<br />

phox gene in patients with coronary artery disease. Circulation 97:<br />

135–137, 1998.<br />

412. Inoue N, Takeshita S, Gao D, Ishida T, Kawashima S, Akita H,<br />

Tawa R, Sakurai H, Yokoyama M. Lysophosphatidylcholine increases<br />

the secretion of matrix metalloproteinase 2 through the<br />

activation of NADH/NADPH oxidase in cultured aortic endothelial<br />

cells. Atherosclerosis 155: 45–52, 2001.<br />

413. Irani K. Oxidant signaling in vascular cell growth, death, survival:<br />

a review of the roles of reactive oxygen species in smooth muscle<br />

<strong>and</strong> endothelial cell mitogenic <strong>and</strong> apoptotic signaling. Circ Res 87:<br />

179–183, 2000.<br />

414. Irani K, Xia Y, Zweier JL, Sollott SJ, Der CJ, Fearon ER,<br />

Sundaresan M, Finkel T, Goldschmidt-Clermont PJ. Mitogenic<br />

signaling mediated by oxidants in Ras-transformed fibroblasts. Science<br />

275: 1649–1652, 1997.<br />

Downloaded from<br />

physrev.physiology.org on February 2, 2010

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!