13.02.2013 Views

Karen Bedard and Karl-Heinz Krause

Karen Bedard and Karl-Heinz Krause

Karen Bedard and Karl-Heinz Krause

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

253. Fantone JC, Ward PA. Polymorphonuclear leukocyte-mediated<br />

cell <strong>and</strong> tissue injury: oxygen metabolites <strong>and</strong> their relations to<br />

human disease. Hum Pathol 16: 973–978, 1985.<br />

254. Farber JL. Mechanisms of cell injury by activated oxygen species.<br />

Environ Health Perspect 102 Suppl 10: 17–24, 1994.<br />

255. Fattman CL, Chang LY, Termin TA, Petersen L, Enghild JJ,<br />

Oury TD. Enhanced bleomycin-induced pulmonary damage in<br />

mice lacking extracellular superoxide dismutase. Free Radic Biol<br />

Med 35: 763–771, 2003.<br />

256. Faurschou M, Borregaard N. Neutrophil granules <strong>and</strong> secretory<br />

vesicles in inflammation. Microbes Infect 5: 1317–1327, 2003.<br />

257. Favero TG, Zable AC, Abramson JJ. Hydrogen peroxide stimulates<br />

the Ca 2� release channel from skeletal muscle sarcoplasmic<br />

reticulum. J Biol Chem 270: 25557–25563, 1995.<br />

258. Fazal N, Shamim M, Khan SS, Gamelli RL, Sayeed MM. Neutrophil<br />

depletion in rats reduces burn-injury induced intestinal<br />

bacterial translocation. Crit Care Med 28: 1550–1555, 2000.<br />

259. Feener CA, Boyce FM, Kunkel LM. Rapid detection of CA polymorphisms<br />

in cloned DNA: application to the 5� region of the<br />

dystrophin gene. Am J Hum Genet 48: 621–627, 1991.<br />

260. Femling JK, Cherny VV, Morgan D, Rada B, Davis AP, Czirjak<br />

G, Enyedi P, Engl<strong>and</strong> SK, Morel<strong>and</strong> JG, Ligeti E, Nauseef<br />

WM, DeCoursey TE. The antibacterial activity of human neutrophils<br />

<strong>and</strong> eosinophils requires proton channels but not BK channels.<br />

J Gen Physiol 127: 659–672, 2006.<br />

261. Feng L, Xia Y, Garcia GE, Hwang D, Wilson CB. Involvement of<br />

reactive oxygen intermediates in cyclooxygenase-2 expression induced<br />

by interleukin-1, tumor necrosis factor-alpha, lipopolysaccharide.<br />

J Clin Invest 95: 1669–1675, 1995.<br />

262. Finegold AA, Shatwell KP, Segal AW, Klausner RD, Dancis A.<br />

Intramembrane bis-heme motif for transmembrane electron transport<br />

conserved in a yeast iron reductase <strong>and</strong> the human NADPH<br />

oxidase. J Biol Chem 271: 31021–31024, 1996.<br />

263. Fisher AB, Al-Mehdi AB, Muzykantov V. Activation of endothelial<br />

NADPH oxidase as the source of a reactive oxygen species in<br />

lung ischemia. Chest 116: 25S–26S, 1999.<br />

264. Forbes JM, Cooper ME, Thallas V, Burns WC, Thomas MC,<br />

Brammar GC, Lee F, Grant SL, Burrell LA, Jerums G, Osicka<br />

TM. Reduction of the accumulation of advanced glycation end<br />

products by ACE inhibition in experimental diabetic nephropathy.<br />

Diabetes 51: 3274–3282, 2002.<br />

265. Forbes LV, Moss SJ, Segal AW. Phosphorylation of p67phox in<br />

the neutrophil occurs in the cytosol <strong>and</strong> is independent of p47phox.<br />

FEBS Lett 449: 225–229, 1999.<br />

266. Forbes LV, Truong O, Wientjes FB, Moss SJ, Segal AW. The<br />

major phosphorylation site of the NADPH oxidase component<br />

p67phox is Thr233. Biochem J 338: 99–105, 1999.<br />

267. Ford WC. Regulation of sperm function by reactive oxygen species.<br />

Hum Reprod Update 10: 387–399, 2004.<br />

268. Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H,<br />

Torres MA, Linstead P, Costa S, Brownlee C, Jones JD, Davies<br />

JM, Dolan L. Reactive oxygen species produced by NADPH<br />

oxidase regulate plant cell growth. Nature 422: 442–446, 2003.<br />

269. Forman HJ, Torres M. Reactive oxygen species <strong>and</strong> cell signaling:<br />

respiratory burst in macrophage signaling. Am J Respir Crit<br />

Care Med 166: S4–S8, 2002.<br />

270. Fortemaison N, Miot F, Dumont JE, Dremier S. Regulation of<br />

H 2O 2 generation in thyroid cells does not involve Rac1 activation.<br />

Eur J Endocrinol 152: 127–133, 2005.<br />

271. Forteza R, Salathe M, Miot F, Conner GE. Regulated hydrogen<br />

peroxide production by Duox in human airway epithelial cells.<br />

Am J Respir Cell Mol Biol 32: 462–469, 2005.<br />

272. Foster CB, Lehrnbecher T, Mol F, Steinberg SM, Venzon DJ,<br />

Walsh TJ, Noack D, Rae J, Winkelstein JA, Curnutte JT,<br />

Chanock SJ. Host defense molecule polymorphisms influence the<br />

risk for immune-mediated complications in chronic granulomatous<br />

disease. J Clin Invest 102: 2146–2155, 1998.<br />

273. Frantz S, Br<strong>and</strong>es RP, Hu K, Rammelt K, Wolf J, Scheuermann<br />

H, Ertl G, Bauersachs J. Left ventricular remodeling after<br />

myocardial infarction in mice with targeted deletion of the NADPH<br />

oxidase subunit gp91(PHOX). Basic Res Cardiol 101: 127–132,<br />

2006.<br />

THE NOX FAMILY OF ROS-GENERATING NADPH OXIDASES 295<br />

Physiol Rev VOL 87 JANUARY 2007 www.prv.org<br />

274. Fu X, Beer DG, Behar J, W<strong>and</strong>s J, Lambeth D, Cao W. cAMP<br />

response element binding protein (CREB) mediates acid-induced<br />

NADPH oxidase NOX5-S expression in Barrett’s esophageal adenocarcinoma<br />

cells. J Biol Chem. In press.<br />

275. Fu XW, Wang D, Nurse CA, Dinauer MC, Cutz E. NADPH<br />

oxidase is an O 2 sensor in airway chemoreceptors: evidence from<br />

K � current modulation in wild-type <strong>and</strong> oxidase-deficient mice.<br />

Proc Natl Acad Sci USA 97: 4374–4379, 2000.<br />

276. Fujii S, Zhang L, Igarashi J, Kosaka H. L-Arginine reverses<br />

p47phox <strong>and</strong> gp91phox expression induced by high salt in Dahl<br />

rats. Hypertension 42: 1014–1020, 2003.<br />

277. Fukui T, Yoshiyama M, Hanatani A, Omura T, Yoshikawa J,<br />

Abe Y. Expression of p22-phox <strong>and</strong> gp91-phox, essential components<br />

of NADPH oxidase, increases after myocardial infarction.<br />

Biochem Biophys Res Commun 281: 1200–1206, 2001.<br />

278. Fukuyama M, Rokutan K, Sano T, Miyake H, Shimada M,<br />

Tashiro S. Overexpression of a novel superoxide-producing enzyme,<br />

NADPH oxidase 1, in adenoma <strong>and</strong> well differentiated adenocarcinoma<br />

of the human colon. Cancer Lett 221: 97–104, 2005.<br />

279. Furst R, Brueckl C, Kuebler WM, Zahler S, Krotz F, Gorlach<br />

A, Vollmar AM, Kiemer AK. Atrial natriuretic peptide induces<br />

mitogen-activated protein kinase phosphatase-1 in human endothelial<br />

cells via Rac1 <strong>and</strong> NAD(P)H oxidase/Nox2-activation. Circ Res<br />

96: 43–53, 2005.<br />

280. Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y,<br />

Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura<br />

I. Increased oxidative stress in obesity <strong>and</strong> its impact on<br />

metabolic syndrome. J Clin Invest 114: 1752–1761, 2004.<br />

281. Gabig TG, Bearman SI, Babior BM. Effects of oxygen tension<br />

<strong>and</strong> pH on the respiratory burst of human neutrophils. Blood 53:<br />

1133–1139, 1979.<br />

282. Gann PH, Ma J, Giovannucci E, Willett W, Sacks FM, Hennekens<br />

CH, Stampfer MJ. Lower prostate cancer risk in men<br />

with elevated plasma lycopene levels: results of a prospective<br />

analysis. Cancer Res 59: 1225–1230, 1999.<br />

283. Gao HM, Liu B, Hong JS. Critical role for microglial NADPH<br />

oxidase in rotenone-induced degeneration of dopaminergic neurons.<br />

J Neurosci 23: 6181–6187, 2003.<br />

284. Gao HM, Liu B, Zhang W, Hong JS. Critical role of microglial<br />

NADPH oxidase-derived free radicals in the in vitro MPTP model of<br />

Parkinson’s disease. FASEB J 17: 1954–1956, 2003.<br />

285. Gao L, Wang W, Li YL, Schultz HD, Liu D, Cornish KG, Zucker<br />

IH. Superoxide mediates sympathoexcitation in heart failure: roles<br />

of angiotensin II <strong>and</strong> NAD(P)H oxidase. Circ Res 95: 937–944, 2004.<br />

286. Garcia RC, Segal AW. Changes in the subcellular distribution of<br />

the cytochrome b-245 on stimulation of human neutrophils. Biochem<br />

J 219: 233–242, 1984.<br />

287. Gardemann A, Mages P, Katz N, Tillmanns H, Haberbosch W.<br />

The p22 phox A640G gene polymorphism but not the C242T gene<br />

variation is associated with coronary heart disease in younger<br />

individuals. Atherosclerosis 145: 315–323, 1999.<br />

288. Gardner AJ, Evans JP. Mammalian membrane block to polyspermy:<br />

new insights into how mammalian eggs prevent fertilisation<br />

by multiple sperm. Reprod Fertil Dev 18: 53–61, 2006.<br />

289. Garrett IR, Boyce BF, Oreffo RO, Bonewald L, Poser J,<br />

Mundy GR. Oxygen-derived free radicals stimulate osteoclastic<br />

bone resorption in rodent bone in vitro <strong>and</strong> in vivo. J Clin Invest<br />

85: 632–639, 1990.<br />

290. Gauss KA, Bunger PL, Quinn MT. AP-1 is essential for p67(phox)<br />

promoter activity. J Leukoc Biol 71: 163–172, 2002.<br />

291. Gavazzi G, Banfi B, Deffert C, Fiette L, Schappi M, Herrmann<br />

F, <strong>Krause</strong> KH. Decreased blood pressure in NOX1-deficient mice.<br />

FEBS Lett 580: 497–504, 2006.<br />

292. Geiszt M, Kapus A, Ligeti E. Chronic granulomatous disease:<br />

more than the lack of superoxide? J Leukoc Biol 69: 191–196, 2001.<br />

293. Geiszt M, Kapus A, Nemet K, Farkas L, Ligeti E. Regulation of<br />

capacitative Ca 2� influx in human neutrophil granulocytes. Alterations<br />

in chronic granulomatous disease. J Biol Chem 272: 26471–<br />

26478, 1997.<br />

294. Geiszt M, Kopp JB, Varnai P, Leto TL. Identification of renox,<br />

an NAD(P)H oxidase in kidney. Proc Natl Acad Sci USA 97: 8010–<br />

8014, 2000.<br />

Downloaded from<br />

physrev.physiology.org<br />

on February 2, 2010

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!