19.01.2014 Views

Instituto de Ciencia de Materiales de Madrid - Materials Science ...

Instituto de Ciencia de Materiales de Madrid - Materials Science ...

Instituto de Ciencia de Materiales de Madrid - Materials Science ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

9 . Determinación estructural empleando<br />

la técnica <strong>de</strong> Difracción <strong>de</strong><br />

Fotoelectrones (PED)<br />

Palabras clave: difracción <strong>de</strong> fotoelectrones; estructura<br />

electrónica; semiconductor<br />

Difracción <strong>de</strong> fotoelectrones (PED) es una técnica<br />

estructural recientemente <strong>de</strong>sarrollada, que permite la<br />

<strong>de</strong>terminación <strong>de</strong> las posiciones <strong>de</strong> átomos <strong>de</strong> diferentes<br />

especies químicas presentes en el sistema a estudio.<br />

Nuestro grupo lleva a cabo experimentos en los<br />

dos posibles modos que permite la técnica: barrido en<br />

energía y barrido en ángulo. En ambos modos se estudia<br />

por fotoemisión la intensidad <strong>de</strong>l pico correspondiente<br />

a fotoelectrones extraídos <strong>de</strong> un nivel profundo<br />

bien variando la energía <strong>de</strong>l fotón o en función <strong>de</strong>l<br />

ángulo polar o azimutal respectivamente. El modo <strong>de</strong><br />

barrido en energía se utiliza para <strong>de</strong>terminar geometrías<br />

<strong>de</strong> adsorción <strong>de</strong> moléculas o átomos fisisorbidos o<br />

quimisorbidos a la superficie, mientras que el modo <strong>de</strong><br />

barrido en ángulo se usa principalmente en la caracterización<br />

<strong>de</strong>l or<strong>de</strong>n cristalino <strong>de</strong> un <strong>de</strong>terminado material.<br />

Nuestra investigación se centra tanto en la metodología<br />

como en la <strong>de</strong>terminación <strong>de</strong> estructuras <strong>de</strong><br />

diferentes sistemas adsorbidos <strong>de</strong> importancia química<br />

o física ej. Sb/Si(111) [1] y HO 2<br />

/Si(100)[2], así como en<br />

la <strong>de</strong>terminación <strong>de</strong> la estructura cristalina <strong>de</strong> ciertos<br />

materiales or incluso <strong>de</strong> capas crecidas in situ ej.<br />

Yb/W(110) [3].<br />

9. Structural <strong>de</strong>termination using<br />

Photoelectron Diffraction Technique<br />

Keywords: photoelectron diffraction; electronic structure;<br />

semiconductor<br />

Photoelectron diffraction (PED) is a structural technique<br />

recently <strong>de</strong>veloped which allows the <strong>de</strong>termination with<br />

high accuracy of the atoms position for different chemical<br />

species present on the system. Our group perform<br />

the photoelectron diffraction experiments in the<br />

two possible mo<strong>de</strong>s: “energy scan mo<strong>de</strong>” and “angular<br />

scan mo<strong>de</strong>”. In both cases the intensity of a core-level<br />

photoelectron peak is studied as a function of electron<br />

kinetic energy or as a function of the azimuthal or polar<br />

angle respectively. The energy scan mo<strong>de</strong> is mainly<br />

used to <strong>de</strong>termine the adsorption geometry of molecules<br />

or atoms which are physisorbed or chemisorbed<br />

while the angular scan mo<strong>de</strong> is mainly used to <strong>de</strong>termine<br />

the or<strong>de</strong>r of the crystal growth mo<strong>de</strong> of a <strong>de</strong>fined<br />

material. Our research interest focuses on the methodology<br />

itself as well as on structure <strong>de</strong>terminations of<br />

various adsorption systems that are of chemical or<br />

physical importance i.e. Sb/Si(111)[1], HO 2<br />

/Si(100)[2],<br />

and the <strong>de</strong>termination of the crystal structure of <strong>de</strong>fined<br />

materials or in situ grown overlayers i.e.<br />

Yb/W(110)[3].<br />

1. S. Bengio et al. Phys. Rev. B65, 205326 (2002).<br />

2. S. Bengio et al. Phys. Rev. B66, 195322 (2002).<br />

3. M.E. Dávila et al. Phys. Rev. B66, 035411 (2002).<br />

4. M.E. Dávila et al. J. Surface and Interface Analysis 33, 595 (2002)<br />

Proyectos: PB-97-1199<br />

10. Estructura electrónica <strong>de</strong> bronces<br />

cuasi-unidimensionales <strong>de</strong> monofosfato<br />

<strong>de</strong> tungsteno<br />

Palabras clave: baja dimensionalidad; propieda<strong>de</strong>s electrónicas;<br />

bronces<br />

Los metales <strong>de</strong> baja dimensionalidad han sido un<br />

campo controvertido <strong>de</strong>s<strong>de</strong> hace más <strong>de</strong> veinte años<br />

<strong>de</strong>bido a las inestabilida<strong>de</strong>s electrónicas que presentan<br />

en función <strong>de</strong> la temperatura. Los conductores unidimensionales<br />

son intrínsecamente inestables a un vector<br />

<strong>de</strong> la red reciproca doble al vector <strong>de</strong> onda <strong>de</strong> Fermi.<br />

Dando lugar, en numerosos casos, a una transición<br />

estructural, <strong>de</strong>nominada “Peierls”, y a una onda <strong>de</strong> <strong>de</strong>nsidad<br />

<strong>de</strong> carga producida por dicha distorsión <strong>de</strong> la red.<br />

Estas inestabilida<strong>de</strong>s electrónicas están íntimamente<br />

ligadas a la topología <strong>de</strong> la superficie <strong>de</strong> Fermi, la cual<br />

esta <strong>de</strong>finida por la localización <strong>de</strong> los electrones en<br />

una o dos dimensiones. Los bronces <strong>de</strong> monofosfato <strong>de</strong><br />

tungsteno son una familia <strong>de</strong> compuestos <strong>de</strong> baja<br />

dimensionalidad con formula general (PO 2 )(WO 3 ) p (WO 3 ) q.<br />

Estos compuestos tiene carácter cuasi-bidimensional<br />

<strong>de</strong>bido a su estructura laminar. Como los electrones <strong>de</strong><br />

conducción 5d están localizados en las capas WO 6 sus<br />

propieda<strong>de</strong>s electrónicas son cuasi-bidimensionales.<br />

Hemos realizado una completa <strong>de</strong>terminación <strong>de</strong> las<br />

propieda<strong>de</strong>s electrónicas, estructura <strong>de</strong> bandas y<br />

superficie <strong>de</strong> Fermi, <strong>de</strong>l compuesto (PO 2 ) 4 (WO 3 ) 4 (WO 3 ) 4 .<br />

Los resultado sugieren la existencia <strong>de</strong> una Onda <strong>de</strong><br />

Densidad <strong>de</strong> Carga asociada a un encaje unidimensional<br />

<strong>de</strong> su superficie <strong>de</strong> Fermi [1].<br />

10. Electronic structure analysis of quasione-dimensional<br />

monophosphate<br />

tungsten bronzes<br />

Keywords: low dimensionality; electronic properties;<br />

bronzes<br />

Low dimensional metals have been a controversial field<br />

in the last twenty-years in relation with the electronic<br />

instabilities that these systems exhibit as a function of<br />

temperature. One-dimensional conductors are intrinsically<br />

instable against a reciprocal wave vector twice as<br />

the Fermi wave vector. Many of them un<strong>de</strong>rgo a structural<br />

phase transition, i.e. a Peierls transition, and a<br />

Charge Density Wave (CDW) is formed as the result of<br />

this lattice distortion. These electronic instabilities are<br />

directly connected with the anisotropy of the Fermi surface,<br />

which results from the localization of the electrons<br />

along quasi-one-dimensional or quasi- twodimensional<br />

structures. The Monophosphate Tungsten<br />

Bronzes (MPTB) p<br />

are a family of low dimensional conductors<br />

with the general formula (PO 2 )(WO 3 ) p (WO 3 ) q .<br />

These compounds are quasi-two-dimensional metals,<br />

due to their layer structure. Since the 5d conductions<br />

electrons are located in the WO 6<br />

layers, the electronic<br />

properties are quasi-two-dimensional. Using Angle<br />

Resolved Photoemission we have obtained a <strong>de</strong>tailed<br />

picture of the electronic structure, and Fermi surface of<br />

the (PO 2 ) 4 (WO 3 ) 4 (WO 3 ) 4 compound. It suggests that the<br />

existence of a Charge Density Wave is due to the onedimensional<br />

nested Fermi surface [1].<br />

131

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!