19.02.2013 Views

Blaga P. Lectures on the differential geometry of - tiera.ru

Blaga P. Lectures on the differential geometry of - tiera.ru

Blaga P. Lectures on the differential geometry of - tiera.ru

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

146 Chapter 4. General <strong>the</strong>ory <strong>of</strong> surfaces<br />

Example. For <strong>the</strong> helicoid<br />

⎧<br />

x = u cos v<br />

⎪⎨<br />

y = u sin v<br />

⎪⎩ z = bv<br />

we can define <strong>the</strong> orientati<strong>on</strong> by putting<br />

n(u, v) =<br />

, (u, v) ∈ R 2 , b > 0,<br />

�<br />

b sin v b cos v<br />

√ , − √<br />

b2 + u2 b2 + u2 ,<br />

On gets, after a straightforward computati<strong>on</strong>:<br />

�<br />

1<br />

G =<br />

0<br />

0<br />

b2 + u2 �<br />

,<br />

⎛<br />

H = ⎜⎝<br />

0 b<br />

0<br />

b<br />

√ b 2 +u 2<br />

√ b 2 +u 2<br />

⎞<br />

⎟⎠ , A =<br />

�<br />

u<br />

√ .<br />

b2 + u2 ⎛<br />

⎜⎝<br />

0<br />

b<br />

(b 2 +u 2 ) 3/2<br />

b<br />

(b2 +u2 ) 3/2<br />

4.12 The sec<strong>on</strong>d fundamental form <strong>of</strong> an oriented surface<br />

Definiti<strong>on</strong> 4.12.1. The sec<strong>on</strong>d fundamental form <strong>of</strong> an oriented surface S is a map associating<br />

to each a ∈ S <strong>the</strong> applicati<strong>on</strong> ϕ2(a) : TaS × TaS → R given by<br />

ϕ2(ξ, η) = −ϕ1(A(ξ), η), ∀ξ, η ∈ TaS. (4.12.1)<br />

Remark. The minus sign in <strong>the</strong> previous definiti<strong>on</strong> is a c<strong>on</strong>sequence <strong>of</strong> our particular<br />

choice <strong>of</strong> sign in <strong>the</strong> definiti<strong>on</strong> <strong>of</strong> <strong>the</strong> shape operator. We found natural to choose <strong>the</strong><br />

shape operator to be <strong>the</strong> <strong>differential</strong> <strong>of</strong> <strong>the</strong> spherical map ra<strong>the</strong>r <strong>the</strong>n <strong>the</strong> opposite <strong>of</strong> <strong>the</strong><br />

<strong>differential</strong>, but <strong>the</strong>n in <strong>the</strong> definiti<strong>on</strong> <strong>of</strong> <strong>the</strong> sec<strong>on</strong>d fundamental form we had to introduce<br />

an extra minus sign, in order to be c<strong>on</strong>sistent with <strong>the</strong> generally accepted definiti<strong>on</strong> <strong>of</strong><br />

<strong>the</strong> sec<strong>on</strong>d fundamental form.<br />

Propositi<strong>on</strong> 4.12.1. For each a ∈ S , ϕ2(a) is a symmetrical bilinear form.<br />

Pro<strong>of</strong>. We take two arbitrary tangent vectors ξ, η ∈ TaS and two arbitrary real numbers<br />

α, β ∈ R. Then we have, first <strong>of</strong> all:<br />

ϕ2(η, ξ) = −ϕ1(A(η), ξ)<br />

A<br />

=<br />

self-adjoint −ϕ1(η,<br />

ϕ1<br />

A(ξ)) =<br />

symmetrical −ϕ1(A(ξ), η) = ϕ2(ξ, η),<br />

which means that ϕ2 is symmetrical. Due to <strong>the</strong> symmetry, it is enough to prove <strong>the</strong><br />

linearity in <strong>the</strong> first variable <strong>on</strong>ly. We have<br />

ϕ2(αξ1 + βξ2, η) = −ϕ1(A(αξ1 + βξ2), η)<br />

A<br />

=<br />

linear −ϕ1(αA(ξ1) + βA(ξ2), η)<br />

0<br />

⎞<br />

ϕ1<br />

=<br />

bilinear<br />

ϕ1<br />

=<br />

bilinear −αϕ1(A(ξ1), η) − βϕ1(A(ξ2), η) = αϕ2(ξ1, η) + βϕ2(ξ2, η),<br />

⎟⎠ .

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!