19.02.2013 Views

Blaga P. Lectures on the differential geometry of - tiera.ru

Blaga P. Lectures on the differential geometry of - tiera.ru

Blaga P. Lectures on the differential geometry of - tiera.ru

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

48 Chapter 1. Space curves<br />

1.9 Oriented curves. The Frenet frame <strong>of</strong> an oriented curve<br />

As we saw before, <strong>the</strong> Frenet frame <strong>of</strong> a parameterized curve is not invariant at a parameter<br />

change (well, at least not at any parameter change). Therefore, in order to be able<br />

to use this apparatus also for regular curve, we need to make it invariant. The idea is to<br />

modify a little bit <strong>the</strong> definiti<strong>on</strong> <strong>of</strong> <strong>the</strong> regular curve, imposing some fur<strong>the</strong>r c<strong>on</strong>diti<strong>on</strong> <strong>on</strong><br />

<strong>the</strong> local parameterizati<strong>on</strong>, to make sure that <strong>the</strong> parameter changes will not modify <strong>the</strong><br />

Frenet frames.<br />

Definiti<strong>on</strong> 1.9.1. Two parameterized curves are (I, r = r(t)) and (J, ρ = ρ(u)) are called<br />

positively equivalent if <strong>the</strong>re is a parameter change λ : I → J, u = λ(t), with λ ′ (t) > 0,<br />

∀t ∈ I.<br />

Definiti<strong>on</strong> 1.9.2. An orientati<strong>on</strong> <strong>of</strong> a regular curve C ⊂ R 3 is a family <strong>of</strong> local parameterizati<strong>on</strong>s<br />

{(Iα, rα = rα(t))}α∈A such that<br />

a) C = �<br />

rα(Iα),<br />

α∈A<br />

b) For any c<strong>on</strong>nected comp<strong>on</strong>ent C b αβ <strong>of</strong> <strong>the</strong> intersecti<strong>on</strong> Cαβ = rα(Iα) ∩ rβ(Iβ) with<br />

α, β ∈ A <strong>the</strong> parameterized curves (I b α, r b α) and (I b β , rb β ) with Ib α = r −1<br />

α (C b αβ ), rb α = rα| I b α ,<br />

I b β<br />

= r−1<br />

β (C0 αβ ), rb β = rβ| I b β are positively equivalent.<br />

Example. For <strong>the</strong> unit circle S 1 <strong>the</strong> following parameterizati<strong>on</strong>s:<br />

and<br />

(I1 = (0, 2π), r1(t) = (cos t, sin t, 0))<br />

(I2 = (−π, π), r2(t) = (cos t, sin t, 0))<br />

give an orientati<strong>on</strong> <strong>of</strong> S 1 . C12 = r1(I1)∩r2(I2) has two c<strong>on</strong>nected comp<strong>on</strong>ents (<strong>the</strong> upper<br />

and <strong>the</strong> lower half circles).<br />

Starting with <strong>the</strong> upper comp<strong>on</strong>ent, C1 12 , we have<br />

I 1 1<br />

I 1 2<br />

= r−1<br />

1 (C1 12 ) = (0, π),<br />

= r−1<br />

2 (C1 12 ) = (0, π)<br />

and <strong>the</strong> parameter change is <strong>the</strong> identity, λ : (0, π) → (0, π), λ(t) = t, ∀t ∈ (0, π),<br />

<strong>the</strong>refore <strong>the</strong> two parameterized curves are, clearly, positively equivalent.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!